为解决无机类富勒烯纳米化合物的制备过程中存在的技术问题,本文以二硫化钼和二硫化钨为主要原料,采用了剥离-重新堆垛-结构控制这一技术方法,用正丁基锂将上述二硫化物剥离成单层,通过掺杂将金属锰离子引入反应体系中,以将单层二硫化物重新堆垛起来,并进行结构控制.XRD、TEM、HRTEM结果表明,应用上述方法制备出了真空管状多元金属二硫化物纳米化合物;纳米管为多壁管,其微细结构具双层结构特征;并探讨了其形成机理.
The fabrication and structure controlling of inorganic fullerene-like nanocompounds have attracted wide
interests in recent years. A new approach of exfoliating-restacking-structure controlling was applied to overcome some technological problems in present
preparation approaches. MoS2 and WS_2 powders were used as precursor materials and exfoliated into single layers by butyllithium. The sample
was treated by MnCl2 solution at 80℃ to introduce Mn2+ cations into the reactive system. In this way, the single layer was restacked
and the structure of product could be controlled. The products were characterized by XRD, TEM and HRTEM respectively. XRD results indicate that
multimetal disulfide compounds can be fabricated by this new approach. TEM results show that the morphology of the multimetal disulfide compounds
exhibits hollow-like nanotubes. HRTEM results show that the structure of the hollow-like nanotubes is of double layers. And the substructure of the
inner layer exhibits multi-wall shape. Based on the above results, a possible formation mechanism of hollow multi-wall nanotubes was discussed.
参考文献
[1] | Tenne R, Margulis L, Genut M, et al. Nature, 1992, 360: 444--446. [2] Margulies L, Salitra G, Tenne R, et al. Nature, 1993, 365: 113--114. [3] Feldman Y, Wasserman E. Srolovitz D J, et al. Science, 1995, 267: 222--225. [4] Chang Yu-Chi, Chang Ying-yin, Lin Chun-I. Electrochimica Acta., 1998, 43 (3-4): 315--324. [5] Srivastava S K, Mandal T K, Samantaray B K. Synthetic Metals, 1997, 90: 135--142. [6] Zhan J H, Zhang Z D, Qian X F, et al. J. of Solid State Chemistry, 1998, 141: 270--273. [7] Vollath D, Szabo D V. Materials Letters, 1998, 35: 236--244. [8] Alperson Boaz, Homyonfer Moshe, Tenne Reshef. J. of electroanalytical Chemistry, 1999, 473: 186--191. [9] Chu Gaosheng, Bian Guozhu, Fu Yilu, et al. Materials Letters, 2000, 43: 81--86. [10] Afanasievm Pavel, ChristopheGeantetChristophe, Thomazeau Cecile, et al. Chem. Commun., 2000. 1001--1002. [11] Thomazeau Cecile, Geantet Christophe, Lacroix Michel Lacroix, et al. J. of Solid State Chemistry, 2001, 160: 147--155. [12] Nath Manashi, Mukhopadhyat K, Rao C N R. Chemical Physics Letters, 2002, 352: 163--168. [13] Peng Yiya, Meng Zhaoyu, Zhong Chang, et al. Materials Chemistry and Physics, 2002, 73: 327--329. [14] Li Yadong, Li Xianlin, He Ronggrui, et al. J. AM. CHEM. SOC., 2002, 124: 1411--1416. [15] Feldman Y, AzAK, Popovitz-Biro R, et al. Solid State Science, 2000, 2: 663--672. [16] Rouxel Jean. Mat. Res. Bull., 1978, 13: 1425--1431. [17] Srivastava S K, Avasthi B N. J. of Scientific and Industrial Research, 1982, 41: 656--664. [18] Py M A, Haering R R. National Research Council of Canada, 1983, 10: 76--81. [19] Srivastava Suneel Kunar, Avasthi Bhola Nath. J. of Materials Science Letters, 1994, 3: 671--673. [20] Srivastava Suneel Kunar, Avasthi Bhola Nath. Synthetic Metals, 1985, 11: 193--205. [21] Srivastava Suneel Kunar, Avasthi Bhola Nath. Synthetic Metals, 1985, 10: 213--221. [22] Joensen Per, Frindt R F, Morrison S Roy. Mat. Res, Bull., 1986, 21: 457--461. [23] Joensen P, Croozier E D, Alberding N, et al. J. Phys. C: Solid State Phys., 1987, 20: 4043--4053. [24] Sekine T, Julien C, Samaras I, et al. Materials Science and Engineering, 1989, B3: 153--185. [25] Chrissafis K, Zamani M, Kambal K, Materials Science and Engineering, 1989 B3: 145--151. [26] Zubavichus Yan V, Slovokhotov Yrii L, Schilling Paul J. et al. Inorganic Chimica Acta., 1998, 280: 211--218. [27] Golub A S, Shumilova I B, Zubavichus Y V, et al. Solid State Inoica., 1999, 122: 137--144. [28] Zubavichus Y V, Golub A S, Leninko N D, et al. Materials Research Bulletin, 1999, 34 (10/11): 1601--1613. [29] Pandey K K. J. of Molecular Structure (Theochem), 1999, 491: 231--235. [30] Zhao Yongfang, Jing Xiaogong, Su Wenhui. J. of molecular Structure (Theochem), 2002, 587: 43--48. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%