欢迎登录材料期刊网

材料期刊网

高级检索

提出碱性NaOH体系分步氧化浸出和盐酸浸出相结合的工艺预处理铅阳极泥,在碱性分步氧化浸出过程中,实现As的氧化溶解和Bi等金属的氧化沉淀,然后用盐酸溶解碱性浸出渣中的Bi,使贵金属富集在盐酸浸出渣中.结果表明:无论碱性直接浸出或酸性直接浸出都不能有效分离铅阳极泥中的有价金属;改变烘烤温度、延长空气氧化时间和改变碱性加压氧化浸出温度都不能实现有价金属的分步分离.当双氧水用量大于0.2以后,碱性浸出过程As的浸出率达到92%以上,碱性浸出渣盐酸浸出时,Bi和Cu的浸出率分别达到99.0%和97.0%,且残余的As不溶解,实现铅阳极泥中有价金属分步分离的目的.

@@@@The united process that combining alkaline multistage oxidation leaching and hydrochloric acid leaching was used to pretreat lead anode slime. When lead anode slime was leached by alkaline multistage oxidation, arsenic is dissolved into the solution, while bismuth, copper and other metals were oxidized and remained in the alkaline leaching residue. The alkaline leaching residue was leached with hydrochloric acid solution. The result shows that valuable metals can not be separated effectively whether the direct leaching is performed in alkaline solution or hydrochloric acid solution. The valuable metals can not be separated step by step when different oxidation modes, such as roasting, prolonging the time of air oxidation leaching and decreasing the temperature of pressure oxidation leaching, are applied to strengthen the NaOH leaching procedure. When H2O2 is added to strengthen NaOH leaching, the base metals in lead anode slime can be removed efficiently. The leaching ratio of arsenic can reach 92% when the coefficient of H2O2 is 0.2, while the alkaline leaching residue is leached in hydrochloric acid solution, the leaching ratios of bismuth and copper reach 99%and 97%, respectively, and the remained arsenic can not be dissolved in the acidic leaching solution.

参考文献

[1] 杨天足.贵金属冶金及产品深加工[M].长沙:中南大学出版社,2005:371-372.
[2] 周令治;陈少纯.稀散金属提取冶金[M].北京:冶金工业出版社,2008:304-311.
[3] LUDVIGSSON B M;LARSSON S R .Anode slime treatment-the bolide experience[J].JOM,2003,55(04):41-44.
[4] HAIT J;JANA R K;SANYAL S K .Processing of copper electrorefining anode slime:A review[J].Mineral Processing and Extractive Metallurgy,2010,118(04):240-252.
[5] 郑雅杰,汪蓓,史建远,孙召明,刘昭成.铜阳极泥预处理富集金银的研究[J].中南大学学报(自然科学版),2010(03):865-870.
[6] HOFFMANN J E .The wet chlorination of electrolytic refinery slimes[J].JOM,1990,42(08):50-54.
[7] ANTIPOV N I;TARASOV A V .Hydrometallurgical methods of recycling interelectrode slime[J].METALLURGIST,2002,46:229-233.
[8] 陈进中,杨天足.高锑低银铅阳极泥控电氯化浸出[J].中南大学学报(自然科学版),2010(01):44-49.
[9] 赵由才;张承龙.碱介质湿法冶金技术[M].北京:冶金工业出版社,2009:1-56.
[10] CORNELI G;POPPE S;van GERVEN T;van den BROECK E CEULEMANS M VANDECASTEELE C .Geochemical modelling of arsenic ans selenium leaching in alkaline water treatment sludge from the production of non-ferrous metals[J].Journal of Hazardous Materials,2008,159:271-279.
[11] 蔡练兵;杨跃新 .高砷铅阳极泥脱砷方法[P].中国,ZL200710034474.8,2009-08-26.
[12] 熊宗国.高砷低金银的铅阳极泥的高压脱砷[J].贵金属,1992(03):30-34.
[13] 刘湛,成应向,曾晓冬.采用氢氧化钠溶液循环浸出法脱除高砷阳极泥中的砷[J].化工环保,2008(02):141-144.
[14] 杨天足;王安;刘伟锋;蔡练兵,文剑锋,张杜超 .一种从铅阳极泥中脱除和回收砷的方法[P].中国,ZL2010274929.5,2011-12-07.
[15] 刘伟锋 .碱性氧化法处理铜/铅阳极泥的研究[D].中南大学,2011.
[16] 北京矿冶研究总院.矿石及有色金属分析手册[M].北京:冶金工业出版社,2001:59-85.
[17] 赵瑞荣;石西昌.锑冶金物理化学[M].长沙:中南大学出版社,2006:75-82.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%