欢迎登录材料期刊网

材料期刊网

高级检索

通过溶胶凝胶法合成取代的石榴石铁氧体纳米材料单相样品.取代的离子共有7种,分别是Ce3+和Fe3+ 、La3+ 、Nd3+ 、Sm3+ 、Gd3+ 、Dy3+.样品的粒度由Scherrer公式d=kλ/Bcosθ计算得到,范围在50~60 nm之间.样品的晶体结构通过X-射线衍射仪和X-射线光电子能谱表征.样品的磁性能通过超导量子干涉仪(SQUID)进行表征.本文对影响样品磁性能的因素进行了分析,期望这些新的稀土复合石榴石铁氧体纳米材料能满足磁光材料应用领域对石榴石铁氧体不同饱和磁化强度的要求.

参考文献

[1] Eppler WR.;Kryder MH. .GARNETS FOR SHORT WAVELENGTH MAGNETO-OPTIC RECORDING[J].The journal of physics and chemistry of solids,1995(11):1479-1490.
[2] Susamu Taketomi;Christopher M. Sorensen;Kenneth J. Klabunde .Preparation of yttrium-iron-garnet nanocrystals dispersed in nanosize-pore glass[J].Journal of Magnetism and Magnetic Materials,2000(1/2):54-64.
[3] Hongjie Zhao;Ji Zhou;Yang Bai .Effect of Bi-substitution on the dielectric properties of polycrystalline yttrium Iron garnet[J].Journal of Magnetism and Magnetic Materials,2004(2/3):208-213.
[4] Xu ZC .Magnetic properties of indium-substituted BiCaVIG single crystals[J].Journal of Applied Physics,2006(8):M8707-1-M8707-3-0.
[5] Chlan V;Novak P;Stepankova H;Englich J;Kuriplach J;Niznansky D .Hyperfine interactions in lutetium iron garnet[J].Journal of Applied Physics,2006(8):M8903-1-M8903-3-0.
[6] Urban R;Putilin A;Wigen PE;Liou SH;Cross MC;Hammel PC;Roukes ML .Perturbation of magnetostatic modes observed by ferromagnetic resonance force microscopy[J].Physical review, B. Condensed matter and materials physics,2006(21):2410-1-2410-4-0.
[7] Nistora I;Holthaus C;Mayergoyz ID;Krafft C .Development of liquid phase epitaxy-grown (Bi, Gd, Lu)-substituted thin-film iron garnets[J].Journal of Applied Physics,2006(8):M8702-1-M8702-3-0.
[8] Sung S Y;Qi X Y .Appl,integrating yttrium iron garnet onto nongarnet substrates with faster deposition rates and high reliability[J].Physics Letters,2005,87:121111.
[9] Guillot M;Ostorero J .Magnetic properties of Sc-substituted ytterbium iron garnet under high dc field (33 Tesla)[J].Applied Physics,2005,97:10F106.
[10] Torres L;Walz F .Charge transport mechanisms in single crystalline yttrium iron garnet as resolved by magnetic relaxationse[J].Physical Status Solidi A Applied Research,2000,180:507.
[11] Gomi M;Furuyama H .Strong magneto-optical enhancement in highly Ce-substituted iron garnet films prepared by sputtering[J].Applied Physics,1991,70:7065.
[12] Cheng ZJ;Yang H .Synthesis and magnetic properties of Sm-Y3Fe5O12 nanoparticles[J].Physica, E. Low-dimensional systems & nanostructures,2007(2):198-202.
[13] Z. Cheng;H. Yang;Y. Cui .Synthesis and magnetic properties of Y_(3-x)Dy_xFe_5O_(12) nanoparticles[J].Journal of Magnetism and Magnetic Materials,2007(1):5-9.
[14] Hongjie Zhao;Ji Zhou;Yang Bai .Effect of Bi-substitution on the dielectric properties of polycrystalline yttrium Iron garnet[J].Journal of Magnetism and Magnetic Materials,2004(2/3):208-213.
[15] Sancheza R D;Kivas J .Particle size effects on magnetic properties of yttrium iron garnets prepared by a sol-gel method[J].Journal of Magnetism and Magnetic Materials,2002,247:92-98.
[16] Lijun Zhao;Yuming Cui;Hua Yang .The magnetic properties of Ni_(0.7)Mn_(0.3)Gd_xFe_(2-x)O_4 ferrite[J].Materials Letters,2006(1):104-108.
[17] D. Rodic;M. Mitric .True magnetic structure of the ferrimagnetic garnet Y3Fe5O12 and magnetic moments of iron ions[J].Journal of Magnetism and Magnetic Materials,1999(1/2):137-145.
[18] Ristic M.;Felner I. .Ferritization of Y~(3+) and Nd~(3+) ions in the solid state[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2000(1/2):301-308.
[19] Lee YB.;Lee SH.;Chae KP. .Mossbauer study of substituted YIG, Y-Gd-Fe-In-O system[J].The journal of physics and chemistry of solids,2001(7):1335-1340.
[20] Goldanskii V I .Investigation of the bond charge in GaP with X-ray data[J].Physical Status Solidi A Applied Research,1975,68:693.
[21] Wolf W P .Effect of crystalline electric fields on ferromagnetic anisotropy[J].Physical Review,1957,108:1152.
[22] Slonczewski J C .Origin of magnetic anisotropy in cobalt-substituted magnetite[J].Physical Review,1958,110:1341.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%