{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"通过对稀土熔盐电解槽的各部分电压降的详细计算,针对计算现场生产运行电解槽,利用数字电压表对电解槽的结构电压进行测量,结果与计算结果一致,该电压降的计算方法可用新槽的设计计算;通过分析氟盐体系氧化物熔盐电解制取金属钕的3kA电解槽的电压平衡关系,提出了提高电压效率,降低电能消耗的措施,为大型稀土电解槽的开发提供参考.","authors":[{"authorName":"陈国华","id":"010db63e-7cd8-4095-98ae-ac6b1bdae2ab","originalAuthorName":"陈国华"},{"authorName":"王小青","id":"361cbe15-6ae3-4dc4-b58f-3e73e253d854","originalAuthorName":"王小青"},{"authorName":"张志宏","id":"c1282023-829c-4e6a-8382-911b69c907ab","originalAuthorName":"张志宏"},{"authorName":"刘中兴","id":"493a6e70-419f-4a0a-9416-54fb3e3e2444","originalAuthorName":"刘中兴"},{"authorName":"伍永福","id":"e2d39e0b-92f2-4f78-a039-ed8296d838e1","originalAuthorName":"伍永福"}],"doi":"","fpage":"86","id":"ce2f46f2-ce8c-4a66-9c0c-51e78593d4a1","issue":"1","journal":{"abbrevTitle":"XT","coverImgSrc":"journal/img/cover/XT.jpg","id":"65","issnPpub":"1004-0277","publisherId":"XT","title":"稀土"},"keywords":[{"id":"e4828d72-1673-40de-ba97-8c59dfe723f6","keyword":"稀土","originalKeyword":"稀土"},{"id":"5e237d89-fbd3-412f-b7fd-bd0dc4de41d8","keyword":"电解槽","originalKeyword":"电解槽"},{"id":"d2026a84-5bc7-4843-afe9-33e22092cf1b","keyword":"电压效率","originalKeyword":"电压效率"},{"id":"7a8e74dc-0c05-4b1c-b61b-d4bed9e55e23","keyword":"电压平衡","originalKeyword":"电压平衡"}],"language":"zh","publisherId":"xitu201301018","title":"稀土熔盐电解槽的电压平衡计算","volume":"34","year":"2013"},{"abstractinfo":"利用实验测量和Monte Carlo模拟的方法,研究了RIBLL的传输效率.分析了影响传输效率的主要因素,发现碎片的动量分布形式对传输效率的模拟结果有重要的影响.另外通过比较,发现大部分碎片传输效率的模拟结果稍大于实验测量结果,两者最大相差约几十倍,这可以帮助估算次级束流强度,指导实验设计.","authors":[{"authorName":"章学恒","id":"c82c2d21-e592-40fe-bf37-e9fc3b618223","originalAuthorName":"章学恒"},{"authorName":"孙志宇","id":"f7a7581a-a033-44f2-bf3a-7787831a2e38","originalAuthorName":"孙志宇"},{"authorName":"王猛","id":"f5f5ccd9-9756-4ff1-b6d4-f3264b572c33","originalAuthorName":"王猛"},{"authorName":"陈志强","id":"8611d5a0-e2c2-4209-a9b3-344d1bbd32c8","originalAuthorName":"陈志强"},{"authorName":"胡正国","id":"9e16ff70-3b15-4782-a942-15d2caf8a30b","originalAuthorName":"胡正国"},{"authorName":"王建松","id":"2d1a2dc9-b844-435e-80f4-d4e1dd29e982","originalAuthorName":"王建松"},{"authorName":"毛瑞士","id":"2c6981aa-3a3e-4254-96f2-129eb484dea6","originalAuthorName":"毛瑞士"},{"authorName":"张雪荧","id":"7d1ef53e-b380-4673-a8e7-78c55e72040a","originalAuthorName":"张雪荧"},{"authorName":"赵铁成","id":"9c87bceb-ab0c-436a-a200-d31cd41f61b6","originalAuthorName":"赵铁成"},{"authorName":"李琛","id":"5a8a64be-a983-4694-9310-a3d1b5c37f42","originalAuthorName":"李琛"},{"authorName":"徐瑚珊","id":"e91d2024-c096-4306-be44-69faa6400353","originalAuthorName":"徐瑚珊"},{"authorName":"肖国青","id":"9a423fba-e3f1-4f2b-99b1-1cd225d92a57","originalAuthorName":"肖国青"},{"authorName":"袁小华","id":"698fa213-7d1b-46d1-aa52-c7c0da3ac5e6","originalAuthorName":"袁小华"},{"authorName":"徐志国","id":"e3e64c31-45f6-4150-836e-96772a2c8ff6","originalAuthorName":"徐志国"},{"authorName":"陈若富","id":"e99071a2-b9f3-4bee-9732-c6adafe3f22b","originalAuthorName":"陈若富"},{"authorName":"郭忠言","id":"be3d5f13-20f7-4664-95aa-b318eb6ca29f","originalAuthorName":"郭忠言"},{"authorName":"王玥","id":"8ce2f105-165e-406d-a84c-ea0fa8736262","originalAuthorName":"王玥"},{"authorName":"黄天衡","id":"e4ddf9e4-8a50-4dd8-aff2-6fd1b18e2a62","originalAuthorName":"黄天衡"},{"authorName":"张宏斌","id":"ab590c52-4810-43ce-b0ab-176c046ce053","originalAuthorName":"张宏斌"}],"doi":"","fpage":"203","id":"a16158e4-4023-4d5a-9436-abd42c3ad748","issue":"3","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"cbde528c-a5e2-48c5-8ce1-afa3cdf6ec2e","keyword":"RIBLL","originalKeyword":"RIBLL"},{"id":"2b516902-7e10-499e-82ba-89030751b69e","keyword":"传输效率","originalKeyword":"传输效率"},{"id":"6fc51a2c-9f6d-48a1-a186-41e6111350ca","keyword":"MoCADl","originalKeyword":"MoCADl"},{"id":"03b09bf9-ae9c-4f59-ac40-ff79253b8ba0","keyword":"LISE++","originalKeyword":"LISE++"}],"language":"zh","publisherId":"yzhwlpl200903006","title":"RIBLL传输效率研究","volume":"26","year":"2009"},{"abstractinfo":"为了节省面板电路驱动芯片的功率损耗以及制作成本,本研究提出一种新的像素电路设计,而在设计中将会融合电荷泵电路.利用这种电路设计的像素可有效地将像素电极上的驱动电压提高到输入电压的2~3倍以上.此像素电路设计具有两个优势:第一,可以有效降低显示面板的像素功率损耗;第二,不需高电压的面板电路驱动芯片,因此可节省芯片的成本及功率损耗.由模拟结果可知,像素电极上的驱动电压确实可由此像素电路设计而提高到输入电压的2~3倍以上;而像素的功率损耗也可有效地降低,约为传统像素的1/2.","authors":[{"authorName":"陈恒殷","id":"f3a4780f-ef42-4b75-acef-88aae1cefdab","originalAuthorName":"陈恒殷"},{"authorName":"蔡志宗","id":"8f0a5ced-e10c-4a98-8620-019bbfb05ff4","originalAuthorName":"蔡志宗"},{"authorName":"黄日锋","id":"18d9bbed-7625-466d-a80f-d185ef50fabd","originalAuthorName":"黄日锋"}],"doi":"10.3969/j.issn.1007-2780.2007.04.019","fpage":"458","id":"bb52f0c2-fd1a-4546-9abe-e28d6659a989","issue":"4","journal":{"abbrevTitle":"YJYXS","coverImgSrc":"journal/img/cover/YJYXS.jpg","id":"72","issnPpub":"1007-2780","publisherId":"YJYXS","title":"液晶与显示 "},"keywords":[{"id":"cfd28ff5-ef52-43bb-9c92-3202d3835a5c","keyword":"面板像素设计","originalKeyword":"面板像素设计"},{"id":"b61db20e-8d72-4121-ba4a-5c0062ffe914","keyword":"电荷泵","originalKeyword":"电荷泵"},{"id":"410e53d8-ef00-459f-b99e-62c48b6b1b72","keyword":"功率损耗","originalKeyword":"功率损耗"}],"language":"zh","publisherId":"yjyxs200704019","title":"电压倍增之像素设计","volume":"22","year":"2007"},{"abstractinfo":"阈值电压(Vth)是液晶材料最重要的参数之一,主要根据液晶显示屏的驱动方式来设计.合适的Vth是LCD显示质量的重要保障.在制造和生产过程中,要尽量保证它的一致性,避免器件出现对比度不良或串扰等现象.结合生产过程中的实际情况及经常出现的问题,阐述了阈值电压的影响因素及设计使用中的注意事项.","authors":[{"authorName":"宋莉丽","id":"7af3e7dd-f1ca-4316-85df-9eb2ed2a4e91","originalAuthorName":"宋莉丽"},{"authorName":"于海峰","id":"cb8a2db4-4aae-4830-90bd-d08ffa07c666","originalAuthorName":"于海峰"},{"authorName":"李燕","id":"b0026555-834e-4c17-81a7-04b25a7a9d9c","originalAuthorName":"李燕"}],"doi":"10.3969/j.issn.1007-2780.2002.02.010","fpage":"139","id":"0797b202-1925-4977-8aab-8e467186a478","issue":"2","journal":{"abbrevTitle":"YJYXS","coverImgSrc":"journal/img/cover/YJYXS.jpg","id":"72","issnPpub":"1007-2780","publisherId":"YJYXS","title":"液晶与显示 "},"keywords":[{"id":"2fbd2c87-214e-44b2-8101-81320c935dc2","keyword":"液晶","originalKeyword":"液晶"},{"id":"a068742c-fab9-4773-8947-c67f9a84f091","keyword":"阈值电压","originalKeyword":"阈值电压"},{"id":"76ad8e95-0fdb-497e-b9bb-8817523d16ca","keyword":"方块电阻","originalKeyword":"方块电阻"},{"id":"92cee023-1c20-4e48-8d49-39e3cbab28da","keyword":"温度","originalKeyword":"温度"},{"id":"ddd814a3-78c6-4895-9e17-231835081ed4","keyword":"预倾角","originalKeyword":"预倾角"}],"language":"zh","publisherId":"yjyxs200202010","title":"阈值电压波动初探","volume":"17","year":"2002"},{"abstractinfo":"在许多物质或能量传递交换的过程中都有效率的概念,如热功转换过程、流动过程、输电过程等,但是在传热过程中却没有.基于效率可以讨论传热过程的性能,并可作为传热过程优化的目标.本文基于新的物理量=定义传热过程的效率,讨论影响传热过程效率的各种因素,特别是把\"不可逆\"因素与\"不可用\"因素分开.不可逆因素来自于某种能量形式的耗散,不可用因素是指某种能量形式无法应用,无法应用的原因又可分为两种,一种是基准点取在T>0 K处引起,另一种是由于过程非最优引起的.","authors":[{"authorName":"胡帼杰","id":"53392984-3c23-4142-a8e3-8b992903b9f6","originalAuthorName":"胡帼杰"},{"authorName":"过增元","id":"88f8a6f2-0e71-4b68-b9aa-00d656e679b0","originalAuthorName":"过增元"}],"doi":"","fpage":"1005","id":"8400f6b2-4ea6-47f0-a6bb-2ffbf1336060","issue":"6","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"861a5bb5-1d0b-4651-8330-490fe693f118","keyword":"传热效率","originalKeyword":"传热效率"},{"id":"94006691-c6d5-42f0-a98f-e42d245d86a4","keyword":"(火积)","originalKeyword":"(火积)"},{"id":"a45f4058-b6f2-495f-b330-88a8c7fc177f","keyword":"换热器","originalKeyword":"换热器"},{"id":"f4c5eb2e-b9f5-4379-9b5f-47e5b258f3ff","keyword":"平衡逆流","originalKeyword":"平衡逆流"},{"id":"8300db86-a1e1-41a0-af3c-2e1b6279e561","keyword":"不可用","originalKeyword":"不可用"}],"language":"zh","publisherId":"gcrwlxb201106027","title":"传热过程的效率","volume":"32","year":"2011"},{"abstractinfo":"导出了包括氧化铝中α-Al2O3含量、电流效率、电解温度和室温四变量在内的碳阳极铝电解的理论能耗和理论能耗电压计算公式.进一步提出铝电解技术参数相互适应原理,根据这一原理,随着电解技术条件的改变及时调整能量平衡,电流效率将会提高.本文还导出了惰性阳极电解的理论能耗和理论能耗电压计算公式.","authors":[{"authorName":"李德祥","id":"65606f6e-9278-4220-8263-65221fd2c7b3","originalAuthorName":"李德祥"}],"doi":"10.3969/j.issn.1671-6620.2006.01.008","fpage":"30","id":"203c9a23-f599-4475-9623-6b9283c3bcdf","issue":"1","journal":{"abbrevTitle":"CLYYJXB","coverImgSrc":"journal/img/cover/CLYYJXB.jpg","id":"17","issnPpub":"1671-6620","publisherId":"CLYYJXB","title":"材料与冶金学报"},"keywords":[{"id":"6d088616-4424-4e21-b050-7705ebaf8e10","keyword":"铝电解","originalKeyword":"铝电解"},{"id":"f83415d8-ee33-455d-b5c3-0b10989551b2","keyword":"炭阳极","originalKeyword":"炭阳极"},{"id":"d34f499d-d9f7-4095-9f64-738e855d4135","keyword":"惰性阳极","originalKeyword":"惰性阳极"},{"id":"3be3d72b-2671-4ed3-b0cd-a9bcf8907ef7","keyword":"能量平衡","originalKeyword":"能量平衡"},{"id":"b89e674b-c1f0-4814-ad71-a04a00095a5c","keyword":"理论能耗","originalKeyword":"理论能耗"},{"id":"a07e4954-a980-46cb-829e-b73ef642f85d","keyword":"理论能耗电压","originalKeyword":"理论能耗电压"}],"language":"zh","publisherId":"clyyjxb200601008","title":"铝电解的理论能耗和理论能耗电压","volume":"5","year":"2006"},{"abstractinfo":"阈值电压是MOSFET最重要的电学参数,它在器件模拟和电路设计方面起着举足轻重的作用.本文分析总结了目前比较常用的阈值电压的提取方法,分别利用它们提取了FinFET和JLT不同沟道长度的阈值电压,讨论了这些方法在提取两种现代MOS器件阈值电压时的有效性和局限性.","authors":[{"authorName":"杨慧","id":"6a43faa1-fcc6-4302-a7eb-a384b3fed998","originalAuthorName":"杨慧"},{"authorName":"郭宇锋","id":"aeb83d8c-70d5-429d-9ad5-b99da07ee2fe","originalAuthorName":"郭宇锋"},{"authorName":"洪洋","id":"ec8a7a51-edf2-4613-9bc0-02c7c02b750f","originalAuthorName":"洪洋"}],"doi":"","fpage":"80","id":"6078911f-053f-48d1-b099-2af7f7ff9aee","issue":"1","journal":{"abbrevTitle":"GNCLYQJXB","coverImgSrc":"journal/img/cover/GNCLYQJXB.jpg","id":"34","issnPpub":"1007-4252","publisherId":"GNCLYQJXB","title":"功能材料与器件学报 "},"keywords":[{"id":"88c2760a-fb49-4836-8a4a-3f374084dbef","keyword":"阈值电压提取","originalKeyword":"阈值电压提取"},{"id":"c4732921-54c7-4014-b6d8-1f486f5d67fa","keyword":"FinFET","originalKeyword":"FinFET"},{"id":"44d80871-8f29-4d5b-9412-d1d2f4ba5fe0","keyword":"Junctionless Transistor","originalKeyword":"Junctionless Transistor"}],"language":"zh","publisherId":"gnclyqjxb201401015","title":"纳米器件阈值电压提取方法","volume":"20","year":"2014"},{"abstractinfo":"近些年来,使用锯齿波直接形成的方法建造非谐振型聚束器在国内及国际均得到了广泛的应用.由于电子技术及机械加工工艺的飞速发展和更高功率电子管的出现,可以设计出更高指标的聚束器,进而可以有效提高束线的匹配效率及运行稳定度.对兰州重离子加速器源束线新的高电压锯齿波聚束器的研制进行了详细阐述,由于该聚束器具有目前国际同类型设备中最高的电压、频率以及相对苛刻的现场条件限制,故还对设计中所涉及的工程实施方案进行了有效补充和完善.","authors":[{"authorName":"孙列鹏","id":"f8f07f8c-1f19-4216-9567-1cce16347504","originalAuthorName":"孙列鹏"},{"authorName":"许哲","id":"7eb21b57-e74b-4f4a-aec5-8bba65e03862","originalAuthorName":"许哲"},{"authorName":"石爱民","id":"b0db807a-d715-4d26-b765-e3ffc6a199a8","originalAuthorName":"石爱民"},{"authorName":"冯勇","id":"d7fb4ef8-2f81-4e7f-9f3f-66566c43d38e","originalAuthorName":"冯勇"},{"authorName":"金鹏","id":"e44d8775-932d-421e-987b-7016553d4299","originalAuthorName":"金鹏"},{"authorName":"兰涛","id":"1852c34c-1fed-4cd4-8253-1423f0318fc3","originalAuthorName":"兰涛"},{"authorName":"高宜海","id":"37009620-d065-4c5a-a825-d57830ccb694","originalAuthorName":"高宜海"},{"authorName":"赵红卫","id":"8c1694ff-4a1b-46d2-a8e4-150294b7243f","originalAuthorName":"赵红卫"}],"doi":"","fpage":"48","id":"65882dfe-1b8a-405d-8213-1ceca16e77e8","issue":"1","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"90d1ed94-9e57-43e7-89a3-2cac0681b6dd","keyword":"锯齿波","originalKeyword":"锯齿波"},{"id":"4fa30507-11a2-4cc5-9ad2-a214e58f65fa","keyword":"非谐振腔","originalKeyword":"非谐振腔"},{"id":"2a321f2e-d8de-415a-b243-6c0b623c6c52","keyword":"聚束器","originalKeyword":"聚束器"}],"language":"zh","publisherId":"yzhwlpl201001008","title":"高电压锯齿波聚束器的设计研制","volume":"27","year":"2010"},{"abstractinfo":"以HIAF-CRing上典型离子238 U34+为研究对象,对其纵向俘获和加速的动力学过程进行了研究。累积后的粒子能量为800 MeV/u,经过绝热俘获和加速后,粒子被加速至1130 MeV/u。研究结果表明,通过选择适当的俘获时间、绝热参数以及相空间面积因子等参数,应用优化后的高频俘获加速曲线,可以获得更高的俘获和加速效率。通过粒子纵向动力学追踪软件ESME上进行模拟,得到了优化后的高频相位、高频电压曲线,使得俘获效率达到99.3%,加速效率近乎100%。同时确定出了CRing 高频腔加速U34+所需满足的特性参数,即电压需达到40 kV,频率范围是0.31~0.34 MHz。","authors":[{"authorName":"商鹏","id":"2b9c0dfa-cc81-465e-b027-b41308f4258c","originalAuthorName":"商鹏"},{"authorName":"殷达钰","id":"9883cfc8-782a-45a0-b15a-0665c6f32cdf","originalAuthorName":"殷达钰"},{"authorName":"夏佳文","id":"197a79cf-a358-4e75-a565-722ebe1ef9ad","originalAuthorName":"夏佳文"},{"authorName":"杨建成","id":"d3a8f1b9-c07f-4008-8e25-6af72d4d2078","originalAuthorName":"杨建成"},{"authorName":"曲国峰","id":"f63c4081-9d95-46e9-a0df-945e7dd3b618","originalAuthorName":"曲国峰"},{"authorName":"郑文亨","id":"144c7cd8-c329-4dde-a2c0-4e02004d8960","originalAuthorName":"郑文亨"},{"authorName":"李钟汕","id":"0a1c655b-fff2-4fdb-a1b3-91ff65d5884b","originalAuthorName":"李钟汕"},{"authorName":"阮爽","id":"16748ffb-69b9-4a8f-9d88-c23cff9a6692","originalAuthorName":"阮爽"}],"doi":"10.11804/NuclPhysRev.32.04.421","fpage":"421","id":"1c28bf8e-418f-481b-9f1f-85da22b28820","issue":"4","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"7eb91021-f684-4020-b0ee-06ce0eb1ac6a","keyword":"模拟","originalKeyword":"模拟"},{"id":"e3a13f31-29f9-42a8-b107-75bdd8f3cf14","keyword":"HIAF","originalKeyword":"HIAF"},{"id":"943d5ecd-bdbc-4b36-bc10-ac3fd0efbfd0","keyword":"压缩","originalKeyword":"压缩"},{"id":"803e13c0-2874-4cea-84df-79d29a5f156c","keyword":"绝热俘获","originalKeyword":"绝热俘获"},{"id":"40136e81-8e68-4727-ae08-97b8d4897019","keyword":"加速","originalKeyword":"加速"}],"language":"zh","publisherId":"yzhwlpl201504009","title":"HIAF-CRing中的俘获加速效率研究","volume":"32","year":"2015"},{"abstractinfo":"研究了三维电极在不同电压波形下处理苯酚废水的电能消耗、降解历程以及工艺条件.结果表明,其他处理条件相同时,方波脉冲电压的降解效率比直流电压平均高出10%.随着苯酚去除率从30%增加到90%,方波脉冲电压节省的电能从0.09 kW·h·kg-1苯酚升高到1.54 kW·h·kg-1苯酚.与常规直流电压相比,脉冲电压对粒子电极复极化程度更高,粒子端电压和工作电流都随粒子间距的增大而增大.采用气质联用仪分析,方波脉冲电压能将苯酚降解为丙二酸、丁烯酸等分子量更小的有机物,降解更为彻底.电解处理苯酚废水最佳条件为:方波槽电压15 V、占空比30%、频率2 kHz、处理时间50 min,此时苯酚最大去除率为89%.","authors":[{"authorName":"王兵","id":"fde62ca5-a8b8-4b16-b1d4-b4f7ae35ea4f","originalAuthorName":"王兵"},{"authorName":"王波","id":"cae233d3-cfb5-4310-8d86-f94f32cfdeab","originalAuthorName":"王波"},{"authorName":"任宏洋","id":"779c3f5e-f964-40a6-a25b-d44cec97b984","originalAuthorName":"任宏洋"},{"authorName":"罗东宁","id":"283e25ab-7663-48b0-b92b-3c6a58f3048a","originalAuthorName":"罗东宁"}],"doi":"10.7524/j.issn.0254-6108.2015.05.2014100802","fpage":"983","id":"8149a104-8a68-4cc3-8786-bebf6b615c91","issue":"5","journal":{"abbrevTitle":"HJHX","coverImgSrc":"journal/img/cover/HJHX.jpg","id":"43","issnPpub":"0254-6108","publisherId":"HJHX","title":"环境化学 "},"keywords":[{"id":"ee3330cb-34bd-449e-b736-89efaf4c3e81","keyword":"三维电极","originalKeyword":"三维电极"},{"id":"e73f9455-03f6-4c61-9a9e-2981dcdece68","keyword":"苯酚废水","originalKeyword":"苯酚废水"},{"id":"03d0a42a-3fa0-4025-b88f-bac55e76846f","keyword":"电压波形","originalKeyword":"电压波形"},{"id":"5463aa6a-0c67-412d-9b8b-de7511f60562","keyword":"能耗","originalKeyword":"能耗"},{"id":"ebf7dc50-583b-4c9e-b972-851cad853d6f","keyword":"占空比","originalKeyword":"占空比"}],"language":"zh","publisherId":"hjhx201505023","title":"电压波形对三维电极法降解苯酚的影响?","volume":"","year":"2015"}],"totalpage":1057,"totalrecord":10569}