欢迎登录材料期刊网

材料期刊网

高级检索

从湖北大冶铜矿的铜山口硫化矿矿坑水中分离得到了一株嗜酸兼性异养细菌,暂命名为DY.该菌株为革兰氏阴性细菌,短杆状,菌体大小为(0.4±0.1)μm×(1.2±0.2)μm,最适生长温度为30 ℃,最适初始生长pH值为3.5,能利用葡萄糖、乳糖、蔗糖和单质硫生长,不能利用FeSO4进行生长.其系统发育树结果表明,菌株DY与Acidiphilium cryptum(Y18446)位于系统发育树的同一分支中,相似度为99.69%.黄铜矿(CuFeS2)摇瓶细菌浸出实验显示,DY菌株单独浸出黄铜矿的能力较弱,但和嗜酸自养的氧化亚铁硫杆菌ATCC 23270混合浸矿时,与氧化亚铁硫杆菌单独浸矿相比,30 d后黄铜矿的浸出率提高了35.98%.

参考文献

[1] 王淀佐.生物工程与矿物提取技术[M].北京:高等教育出版社,1999:155.
[2] RAWLINGS D E.Mesophilic,autotrophilic bioleaching bacteria:Description,physiology and role[A].Springer-Verlag and Landes Bioscience,1997:229-245.
[3] OLSON G J;BRIERLEY J A;BRIERLEY C L .Bioleaching review part B:Progress in bioleaching:applications of microbial processes by the minerals industries[J].Applied Microbiology and Biotechnology,2003,63:249-257.
[4] Yang Songrong;Xie Jiyuan;Qin Guanzhou .Research and application of bioleaching and biooxidation technologies in China[J].Minerals Engineering,2002(5):361-363.
[5] Yang Yu;Wan Min-Xi;Shi Wu-Yang;Peng Hong;Qiu Guan-Zhou .Bacterial diversity and community structure in acid mine drainage from Dabaoshan Mine, China[J].Aquatic Microbial Ecology,2007(2):141-151.
[6] HARRISON A P Jr .Acidiphilium cryptum gen.nov.,sp.nov.,heterotrophic bacterium from acidic mineral environments[J].International Journal of Systematic Bacteriology,1981,31:327-332.
[7] WAKAO N;SHIBA T;HIRAISHI A;ITO M SAKURAI Y .Distribution of bacteriochlorophyll a in species of the genus Acidiphilium[J].Current Microbiology,1993,27:277-279.
[8] Hiraishi A.;Nagashima KVP.;Matsuura K.;Shimada K.;Takaichi S.;Wakao .Phylogeny and photosynthetic features of Thiobacillus acidophilus andrelated acidophilic bacteria: its transfer to the genus Acidiphilium asAcidiphilium acidophilum comb. nov.[J].International Journal of Systematic Bacteriology,1998(4):1389-139.
[9] Kusel K.;Dorsch T.;Acker G.;Stackebrandt E. .Microbial reduction of Fe(III) in acidic sediments: Isolation ofAcidiphilium cryptum JF-5 capable of coupling the reduction of Fe(III) tothe oxidation of glucose[J].Applied and Environmental Microbiology,1999(8):3633-3640.
[10] JOHNSON D B;BRIDGE T A M .Reduction of ferric iron by acidophiclic heterotrophic bacteria:Evidence for constitutive and inducible enzyme systems in Acidiphilium spp[J].Journal of Applied Microbiology,2002,92:315-321.
[11] Baker BJ.;Banfield JF. .Microbial communities in acid mine drainage [Review][J].FEMS Microbiology Ecology,2003(2):139-152.
[12] Rawlings DE .Heavy metal mining using microbes [Review][J].Annual Review of Microbiology,2002(0):65-91.
[13] J.A. Brierley;C.L. Brierley .Present and future commercial applications of biohydrometallurgy[J].Hydrometallurgy,2001(2/3):233-239.
[14] RAWLINGS D E;TRIBUTSCH H;HANSFORD G S .Reasons why 'Leptospirillum' like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores[J].Microbiology,1999,145:5-13.
[15] SILVERMAN M P;LUNDGREN D C .Study on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans:I.An improved medium and harvesting procedure for securing high cell yield[J].Journal of Bacteriology,1959,77:642-647.
[16] LANE D J.16S/23S rRNA sequencing[A].,1991:115-175.
[17] Thompson JD;Gibson TJ;Plewniak F;Jeanmougin F;Higgins DG .The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools[J].Nucleic Acids Research,1997(24):4876-4882.
[18] KUMAR S;TAMURA K;NEI M .MEGA3:Integrated software for molecular evolutionary genetics analysis and sequence alignment[J].Briefings in Bioinformatics,2004,5:150-163.
[19] McGuire MM.;Banfield JF.;Hamers RJ.;Edwards KJ. .Kinetics, surface chemistry, and structural evolution of microbially mediated sulfide mineral dissolution[J].Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society,2001(8):1243-1258.
[20] T. A. FOWLERI;F. K. CRUNDWELL .Leaching of zinc sulfide by Thiobacillus ferrooxidans: bacterial oxidation of the sulfur product layer increases the rate of zinc sulfide dissolution at high concentrations of ferrous ions[J].Applied and Environmental Microbiology,1999(12):5285-5292.
[21] H.R. Watling .The bioleaching of sulphide minerals with emphasis on copper sulphides - A review[J].Hydrometallurgy,2006(1/2):81-108.
[22] PAIMENT A;LEDUC L G;FERRONI G D .The effect of the facultative chemolithotrophic bacterium Thiobacillus acidophilus on the leaching of low-grade Cu-Ni sulfide ore[J].Geomicrobiology Journal,2001,8:157-165.
[23] Bacelar-Nicolau P.;Johnson DB. .Leaching of pyrite by acidophilic heterotrophic iron-oxidizing bacteria inpure and mixed cultures[J].Applied and Environmental Microbiology,1999(2):585-590.
[24] WICHLACZ P L;THOMPSON D L.The effect of acidophilic heterotrophic bacteria on the leaching of cobalt by Thiobacillus ferrooxidans[A].Kew,UK,1987:77-88.
[25] 刘艳阳,陈志伟,姜成英,刘双江.一株嗜酸化能异养菌Acidiphilium sp.的分离鉴定及其对Fe(Ⅲ)代谢的研究[J].微生物学报,2007(02):350-354.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%