采用等离子喷涂和激光重熔复合工艺在TiAl合金表面制备了纳米Al_2O_3-13wt%TiO_2复合陶瓷涂层.为了使重熔后的陶瓷涂层保留一定的纳米结构组织,采用相对较低的激光功率和能量密度进行重熔.用扫描电镜(SEM)和X射线衍射仪(XRD)分析了涂层形貌、微观结构和相组成.结果表明,等离子喷涂纳米陶瓷涂层由纳米颗粒完全熔化区和部分熔化区两部分组成,具有等离子喷涂态的典型层状结构;由于受到激光功率、能量密度、陶瓷材料热物性参数和涂层厚度等因素的综合影响,重熔后陶瓷涂层出现了明显的分层结构特征;依据组织形态的不同,可将其大致分为:重熔区、烧结区和残余等离子喷涂区.重熔区由致密细小的等轴晶组成,并且保留了部分来源于原等离子喷涂部分熔化区的残留纳米粒子.由于等离子喷涂过程中涂层沉积时的快速凝固作用,涂层以亚稳相γ-Al_2O_3为主,经过激光重熔处理后,γ-Al_2O_3又重新转变为稳定相α-Al_2O_3.
Nanostructured Al_2O_3-13wt% TiO_2 composite ceramic coatings were prepared by plasma spraying and laser remelting on TiAl alloy surface. To retain nanopartilces in the plasma-sprayed nanostructured ceramic coating after laser remelting,a lower laser power and energy density were used. The morphology,microstructure and phases of the coating were investigated by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that the plasma-sprayed nanostructured ceramic coating with a lamellar-like structure as conventional coating consists of fully melted region and partially melted region. The laser remelted coating exhibits obvious layer-like characteristics due to influence of laser power,energy density,thermophysical parameters of ceramics and coating thickness. According to the microstruetural morphology,the remelted ceramic coating can be divided into the remelted zone (with fine equiaxed grains),the sintered zone and remained plasma-sprayed zone. Due to the rapid heating and cooling for laser remelting,some remained nanoparticles are observed in the remelted zone. θ-Al_2O_3 phase and partially α-Al_2O_3 phase are transformed into metastable phase of γ-Al_2O_3 after plasma spraying. While the metastable γ-Al_2O_3 phase in the remelted zone is re-transformed into stable phase of α-Al_2O_3 again after laser remelting.
参考文献
[1] | R. Yang;Y. Y. Cui;L. M. Dong;Q. Jia .Alloy development and shell mould casting of gamma TiAl[J].Journal of Materials Processing Technology,2003(2/3):179-188. |
[2] | Ibrahim A;Lima RS;Berndt CC;Marple BR .Fatigue and mechanical properties of nanostructured and conventional titania (TiO2) thermal spray coatings[J].Surface & Coatings Technology,2007(16/17):7589-7596. |
[3] | ZHANG Jianxin,HE Jining,DONG Yanchun,LI Xiangzhi,YAN Dianran.Microstructure and properties of Al2O3-13%TiO2 coatings sprayed using nanostructured powders[J].稀有金属(英文版),2007(04):391-397. |
[4] | Y. Wang;W. Tian;Y. Yang .Thermal shock behavior of nanostructured and conventional Al2O3/13 wt%TiO2 coatings fabricated by plasma spraying[J].Surface & Coatings Technology,2007(18):7746-7754. |
[5] | 陈传忠,雷廷权,包全合,姚书山.等离子喷涂-激光重熔陶瓷涂层存在问题及改进措施[J].材料科学与工艺,2002(04):431-435. |
[6] | Yang Y Z;Zhu Y L;Liu Z Y et al.Laser remelting of plasma sprayed Al_2O_3 ceramic coatings and subsequent wear resistance[J].Materials Science and Engineering A,2000,291(1-2):168-172. |
[7] | Ahmed I;Bergman T L .Optimization of plasma spray processing parameters for deposition of nanostrnctured powders for coating formation[J].Journal of Fluids Engineering,Transactions of the ASME,2006,128(02):394-401. |
[8] | 王全胜,王富耻,柳彦博,李轶昳,马壮.等离子喷涂纳米Al2O3-13%TiO2涂层组织与性能[J].稀有金属材料与工程,2007(z2):530-532. |
[9] | 宫文彪,孙大千,孙喜兵,刘威.等离子喷涂纳米团聚体粉末的熔化特性研究[J].材料热处理学报,2007(04):125-129. |
[10] | Gao YL;Wang CS;Yao M;Liu HB .The resistance to wear and corrosion of laser-cladding Al2O3 ceramic coating on Mg alloy[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2007(12):5306-5311. |
[11] | 陈传忠.激光熔覆Al2O3+TiO2复合陶瓷涂层的微观结构[J].硅酸盐学报,2000(02):133-138. |
[12] | 花国然,黄因慧,赵剑峰,王蕾,田宗军,张建华,张永康.激光熔覆纳米Al2O3等离子喷涂陶瓷涂层[J].中国有色金属学报,2004(02):199-203. |
[13] | 李崇桂,田伟,杨勇,王铀.TC4钛合金表面等离子喷涂Al2O3-13wt%TiO2涂层及激光重熔研究[J].材料热处理学报,2007(z1):228-232. |
[14] | 李军,张光钧,李文戈.激光熔覆制备纳米陶瓷涂层的研究进展[J].机械工程材料,2007(11):13-16,39. |
[15] | Lin XH.;Zeng Y.;Zhou XM.;Ding CX. .Microstructure of alumina-3wt.% titania coatings by plasma spraying with nanostructured powders[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):228-234. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%