欢迎登录材料期刊网

材料期刊网

高级检索

为了满足高温质子交换膜燃料电池使用要求,采用溶液铺膜法制备了磺化聚芳醚酮砜(SPAEEKS)与磷钨酸(HPA)复合型质子交换膜.红外光谱证明磷钨酸中的桥氧原子和端氧原子与磺酸基团形成了强烈的相互作用.扫描电镜照片显示磷钨酸粒子能够均匀地分散在聚合物的基体中.磷钨酸的引入提高了复合膜的热稳定性,含有30 wt%HPA、SPAEEKS磺化度为0.8的复合膜(HPA30/SPAEEKS-0.8)的玻璃化转变温度达到236℃,质量损失5%时的热分解温度达到了299℃.在相同测试条件下,HPA30/SPAEEKS-1.0在80℃时质子传导率高于Nation 117,而且在120℃达到了0.098 S/cm.结果表明,HPA30/SPAEEKS-1.0有望在高温质子交换膜燃料电池中得到应用.

参考文献

[1] Harrision W L,Hicker M A,Kim Y S,et al.Poly(arylene ether sulfone) copolymers and related systems from disulfonated monomer building blocks:Synthesis,characterization,and performance--A topical review[J].Fuel Cells,2005,5(2):201-212.
[2] Wang E D,Shi P F,Du C Y.A novel self-humidifying membrane electrode assembly with water transfer region for proton exchange membrane fuel cells[J].J Power Sources,2008,175(1):183-188.
[3] Shi W Y,Hou M,Shao Z G,et al.A novel proton exchange membrane fuel cell anode for enhancing CO tolerance[J].J Power Sources,2007,174(1):164-169.
[4] Bae B C,Miyatake K J,Watanabe M.Sulfonated poly(arylene ether sulfone) ionomers containing fluorenyl groups for fuel cell applications[J].J Membrane Science,2008,310(1/2):110-118.
[5] Tsai J C,Kuo J F,Chen C Y.Synthesis and properties of novel HMS-based sulfonated poly(arylene ether sulfone)/ silica nano-composite membranes for DMFC applications[J].J Power Sources,2007,174(1):103-113.
[6] Bai Z W,Price G E,Yoonessi M,et al.Proton exchange membranes based on sulfonated polyarylenethioethersulfone and sulfonated polybenzimidazole for fuel cell applications[J].J Membrane Science,2007,305(1/2):69-76.
[7] Sambandam S,Ramani V.SPEEK/functionalized silica composite membranes for polymer electrolyte fuel cells[J].J Power Sources,2007,170(2):259-267.
[8] 索进平,崔坤,钱晓良,等.新型以无机物为主的免增湿复合质子交换膜[J].复合材料学报,2004,21(1):23-27.Sup Jinping,Cui Kun,Qian Xiaoliang,et al.Novel unhumidified composite proton exchange membrane dominated by inorganic materials[J].Acta Materiae Compositae Sinica,2004,21(1):23-27.
[9] Wang Z,Li X F,Zhao C J,et al.Synthesis and characterization of sulfonated poly(arylene ether ketone ketone sulfone) membranes for application in proton exchange membrane fuel cells[J].J Power Sources,2006,160(2):969-976.
[10] Wang Z,Ni H Z,Zhao C J,et al.Influence of the hydroquinone with different pendant groups on physical and electrochemical behaviors of directly polymerized sulfonated poly (ether ether sulfone) copolymers for proton exchange membranes[J].J Membrane Science,2006,285(1/2):239-248.
[11] Wang Z,Li X F,Zhao C J,et al.Sulfonated poly(ether ether sulfone) copolymers for proton exchange membrane fuel cells[J].Journal of Applied Polymer Science,2007,104(3),1443-1450.
[12] Zhao C J,Wang Z,Bi D W,et al.Blend membranes based on diaulfonated poly (aryl ether ether ketone)s (SPEEK) and poly(amide imide) (PAD for direct methanol fuel cell usages[J].Polymer,2007,48(11):3090-3097.
[13] Zhao C J,Li X F,Wang Z,et al.Synthesis of the block sulfonated poly(ether ether ketone)s (SPEEKs) materials for proton exchange membrane[J].J Membrane Science,2006,280(1/2):643-650.
[14] 王哲,李先锋,赵成吉,等.新型燃料电池质子交换膜--含叔丁基的磺化聚芳醚砜[J].高等学校化学学报,2005,26(11):2149-2152.Wang Zhe,Li Xianfeng,Zhao Chengji,et al.Novel proton exchange membranes used for fuel cell--Sulfonated poly(arylene ether sulfone) with tert-butylgroups[J].Chem J Chin U,2005,26(11):2149-2152.
[15] Staiti P,Arico A S,Baglio V,et al.Hybrid Nation-silica membranes doped with heteropolyacids for application in direct methanol fuel ceils[J].Solid State Ionics,2001,145(1/4):101-107.
[16] Dimitrova P,Friedrich K A,Stimming U,Vogt B.Modified Nation-based membranes for use in direct methanol fuel cells[J].Solid State Ionics,2002,160(1/2):115-122.
[17] Wang F,Hickner M,Kim Y S,Zawodzinski T A,McGrath J E.Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers;Candidates for new proton exchange membranes[J].J Membrane Science,2002,197(1/2):231-242.
[18] Paze C,Bordiga S,Zecchina A.H2O interaction with solid H3PW2O40 An IR study[J].Langmuir,2000,16(21):8139-8144.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%