欢迎登录材料期刊网

材料期刊网

高级检索

采用单壁碳纳米管作为合成电容器电极材料的基础原料,以氧化石墨烯提高单壁碳纳米管的分散性,以二氧化锰来增强其比电容,分别采用微波处理与传统水热法合成复合材料,重点探讨不同合成方式对电极材料结构及性能的影响。与传统水热法相比,微波法除了具有操作简便、加热时间短等优点外,合成的复合材料具有更均一的微观结构,且更加均匀的覆盖在碳质材料的表面,因而作为超级电容器电极材料时能表现出更优良的电学性能:在0.2 A/g的电流密度下,其比电容达173 F/g,比传统水热法合成的材料高出24.5%;具有更低的电荷转移电阻,仅为1.425Ω;更高的充放电稳定性,在20 mV/s的扫描速率下循环1000次,电容损失率仅为3.74%。

HNO3-oxidized single-wall carbon nanotubes ( SWCNTs) and graphene oxide ( GO) were ultrasonically dispersed in water to which potassium permanganate was added, and the resulting mixtures were treated under microwave radiation at 100℃ for 1 h or hydrothermal conditions at 100℃ for 1, 5 and 10 h to prepare SWCNT-GO/MnO2 composites as electrode materials of electro-chemical capacitors. Results indicate that the composite prepared using the microwave method has a higher specific capacitance (173F/g at 0.2A/g), lower pseudo-charge transfer resistance (1.425Ω) and longer cyclic stability (3.74% capacitance loss after 1 000 cycles at the scan rate of 20 mV/s) than the ones prepared using the hydrothermal method. Moreover, the microwave method has the advantages of simplicity of operation and shorter heating time.

参考文献

[1] Changbin Im;Young Soo Yun;Bona Kim;Hyun Ho Park;Hyoung-Joon Jin .Amorphous Carbon Nanotube/MnO_2/Graphene Oxide Ternary Composite Electrodes for Electrochemical Capacitors[J].Journal of nanoscience and nanotechnology,2013(3):1765-1768.
[2] 郑冬芳,贾梦秋,徐斌,张浩,曹高萍,杨裕生.高性能超级电容器用高比表面积、层次孔结构炭材料的简便制备[J].新型炭材料,2013(02):151-155.
[3] Ye HS;Liu X;Cui HF;Zhang WD;Sheu FS;Lim TM .Electrochemical oxidation of multi-walled carbon nanotubes and its application to electrochemical double layer capacitors[J].Electrochemistry communications,2005(3):249-255.
[4] An KH.;Park YS.;Choi YC.;Lee SM.;Chung DC.;Bae DJ.;Lim SC. Lee YH.;Kim WS. .Supercapacitors using single-walled carbon nanotube electrodes[J].Advanced Materials,2001(7):497-500.
[5] Liu,Z.;Dong,X.;Song,L.;Zhang,H.;Liu,L.;Zhu,D.;Song,C.;Leng,X. .Carboxylation of multiwalled carbon nanotube enhanced its biocompatibility with L02 cells through decreased activation of mitochondrial apoptotic pathway[J].Journal of biomedical materials research, Part A,2014(3):665-673.
[6] I.-H. Kim;J.-H. Kim;Y.-H. Lee .Synthesis and Characterization of Electrochemically Prepared Ruthenium Oxide on Carbon Nanotube Film Substrate for Supercapacitor Applications[J].Journal of the Electrochemical Society,2005(11):A2170-A2178.
[7] Kim IH;Kim JH;Cho BW;Lee YH;Kim KB .Synthesis and electrochemical characterization of vanadium oxide on carbon nanotube film substrate for pseudocapacitor applications[J].Journal of the Electrochemical Society,2006(6):A989-A996.
[8] Yu Jin;Hongyuan Chen;Minghai Chen .Graphene-Patched CNT/MnO2 Nanocomposite Papers for the Electrode of High-Performance Flexible Asymmetric Supercapacitors[J].ACS applied materials & interfaces,2013(8):3408-3416.
[9] Ghosh A;Lee Y H .Carbon-based electrochemical capacitors[J].Chem Sus Chem,2012,5(3):480-499.
[10] Pengxian Han;Yanhua Yue;Zhihong Liu;Wei Xu;Lixue Zhang;Hongxia Xu;Shanmu Dong;Guanglei Cui .Graphene oxide nanosheets/multi-walled carbon nanotubes hybrid as an excellent electrocatalytic material towards VO~(2+)/VO_2~+ redox couples for vanadium redox flow batteries[J].Energy & environmental science: EES,2011(11):4710-4717.
[11] You B;Li N;Zhu H et al.Graphene oxide-dispersed Pristine CNTs Support for MnO2 nanorods as high performance superca-pacitor electrodes[J].Chem Sus Chem,2013,6(3):474-480.
[12] Sumanta Kumar Meher;G. Ranga Rao .Enhanced activity of microwave synthesized hierarchical MnO_2 for high performance supercapacitor applications[J].Journal of Power Sources,2012(Oct.1):317-328.
[13] Idalia Bilecka;Markus Niederberger .Microwave chemistry for inorganic nanomaterials synthesis[J].Nanoscale,2010(8):1358-1374.
[14] Chung Jung Hung;Pang Lin;Tseung Yuen Tseng .Electrophoretic fabrication and pseudocapacitive properties of graphene/manganese oxide/carbon nanotube nanocomposites[J].Journal of Power Sources,2013(Dec.1):594-602.
[15] Brousse T;Toupin M;Dugas R;Athouel L;Crosnier O;Belanger D .Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors[J].Journal of the Electrochemical Society,2006(12):A2171-A2180.
[16] Cheng, Y.;Lu, S.;Zhang, H.;Varanasi, C.V.;Liu, J. .Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors[J].Nano letters,2012(8):4206-4211.
[17] Manab Kundu;Lifeng Liu .Direct growth of mesoporous MnO_2 nanosheet arrays on nickel foam current collectors for high-performance pseudocapacitors[J].Journal of Power Sources,2013(Dec.1):676-681.
[18] Zhangpeng Li;Yongjuan Mi;Xiaohong Liu .Flexible graphene/MnO2 composite papers for supercapacitor electrodes[J].Journal of Materials Chemistry: An Interdisciplinary Journal dealing with Synthesis, Structures, Properties and Applications of Materials, Particulary Those Associated with Advanced Technology,2011(38):14706-14711.
[19] Yu Jin;Hongyuan Chen;Minghai Chen .Graphene-Patched CNT/MnO2 Nanocomposite Papers for the Electrode of High-Performance Flexible Asymmetric Supercapacitors[J].ACS applied materials & interfaces,2013(8):3408-3416.
[20] Lee, S.W.;Kim, J.;Chen, S.;Hammond, P.T.;Shao-Horn, Y. .Carbon nanotube/manganese oxide ultrathin film electrodes for electrochemical capacitors[J].ACS nano,2010(7):3889-3896.
[21] Sumanta Kumar Meher;P. Justin;G. Ranga Rao .Pine-cone morphology and pseudocapacitive behavior of nanoporous nickel oxide[J].Electrochimica Acta,2010(28):8388-8396.
[22] Xin Zhao;Beatriz Mendoza Sanchez;Peter J. Dobson .The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices[J].Nanoscale,2011(3):839-855.
[23] Hou, Y.;Cheng, Y.;Hobson, T.;Liu, J. .Design and synthesis of hierarchical MnO_2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes[J].Nano letters,2010(7):2727-2733.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%