欢迎登录材料期刊网

材料期刊网

高级检索

通过Al-7Si-0.36Mg合金定向凝固实验和元胞自动机模型,开展定向凝固枝晶形貌演化和一次枝晶臂间距选择过程的实验和模拟。结果表明:在给定的凝固条件下,一次枝晶臂间距范围是一个连续的变化区间。在恒定温度梯度和不同凝固速度条件下,测得Al-7Si-0.36Mg合金一次枝晶臂间距上限值(λmax)、下限值(λmin)和平均值(λave)以及生长速率之间的关系,且上限值和下限值的比值接近3。模拟结果与实验结果的吻合程度明显优于Hunt?Lu等解析模型的预测结果,表明CA模型在枝晶定向凝固过程枝晶形貌演化模拟和枝晶臂间距预测等方面的准确性。结合模拟研究和文献调研分析影响定向凝固一次枝晶臂选择的因素,包括抽拉速度v、温度梯度G、界面能大小、溶质扩散系数DL、枝晶生长取向与热流方向的偏离角度θ等。

The directional solidification dendritic morphology evolution and primary dendrite arm spacing selection process of Al-7Si-0.36Mg alloy were studied by directional solidification experiments and cellular automaton model. The results indicate that there is a continuous range of primary dendrite arm spacing under the given solidification condition. Under the condition of the given temperature gradient and various solidification velocities, the relationships between the primary dendrite arm spacing parameters (λmax,λave,λmin) of Al-7Si-0.36Mg alloy and growth velocity were expressed, andλmax/λmin≈3. The simulated results show a quite good agreement with the experimental results, which is better than predicted results of Hunt-Lu model. The comparisons reveal that the present CA model has a high accuracy in simulating the evolution of dendrite morphology and predicting primary dendrite arm spacing in directional solidification. Based on the predictions and related literatures, the factors influencing the selection of primary dendrite arm spacing, such as growth velocity v, temperature gradient G, interfacial energy effect, solute diffusion coefficient DL, as well as the deviation angleθbetween the dendrite growth direction, and heat flux direction were analyzed.

参考文献

[1] W.J.Boettinger;S.R.Coriell .Solidification microstructures: recent developments, future directions[J].Acta materialia,2000(1):43-70.
[2] Melo MLNM;Rizzo EMS;Santos RG .Predicting dendrite arm spacing and their effect on microporosity formation in directionally solidified Al-Cu alloy[J].Journal of Materials Science,2005(7):1599-1609.
[3] ROCHA O L;SIQUEIRA C A;GARCIA A .Heat flow parameters affecting dendrite spacing during unsteady-state solidification of Sn-Pb and Al-Cu alloy[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,2003,34:995-1006.
[4] QUAREMA J M V;SANTOS C A;GARCIA A .Correlation between unsteady-state solidification condition,dendrite spacing and mechanical properties of Al-Cu alloys[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,2000,31:3167-3178.
[5] HUNT J D.Solidification and casting of metals[M].London:The Metal Society,1979
[6] KURZ W;FISHER D J .Dendrite growth at the limit of stability:tip radius and spacing[J].ACTA METALLURGICA,1981,29:11-20.
[7] TRIVEDI R .Interdendritic spacing:partⅡ. A comparison of theory and experiment[J].Metallurgical Transactions A,1984,15:977-982.
[8] WARREN J A;LANGER J S .Stability of dendritic spacings[J].Physical Review A,1990,42:3518-3525.
[9] WARREN J A;LANGER J S .Prediction of dendritic spacings in a directional solidification experiment[J].Physical Review E,1993,47:2702-2712.
[10] MA D .Modeling of primary spacing selection in dendrite arrays during directional solidification[J].Metallurgical and Materials Transactions B:Process Metallurgy and Materials Processing Science,2002,33:223-233.
[11] HUANG W D;GENG X G;ZHOU Y H .Primary spacing selection of constrained dendritic growth[J].Journal of Crystal Growth,1993,134:105-115.
[12] HUNT J D;LU S Z .Modeling of cellular-dendritic array growth:spacing and structure predictions[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1996,27:611-623.
[13] W. Wang;P. D. Lee;M. McLean .A model of solidification microstructures in nickel-based superalloys: predicting primary dendrite spacing selection[J].Acta materialia,2003(10):2971-2987.
[14] H. -J. Diepers;D. Ma;I. Steinbach .History effects during the selection of primary dendrite spacing. Comparison of phase-field simulations with experimental observations[J].Journal of Crystal Growth,2002(Pt.1):149-153.
[15] 单博炜,黄卫东,林鑫,魏雷.元胞自动机模型模拟枝晶一次间距的选择[J].金属学报,2008(09):1042-1050.
[16] ZHANG Xian-fei;ZHAO Jiu-zhou .Dendritic microstructure formation in a directionally solidified Al-11.6Cu-0.85Mg alloy[J].Journal of Crystal Growth,2014,391:52-58.
[17] 张航,许庆彦,史振学,柳百成.DD6高温合金定向凝固枝晶生长的数值模拟研究[J].金属学报,2014(03):345-354.
[18] 石玉峰,许庆彦,龚铭,柳百成.定向凝固过程中NH4Cl-H2O枝晶生长的数值模拟[J].金属学报,2011(05):620-627.
[19] GANDIN C A;RAPPAZ M .A 3D cellular automaton algorithm for the prediction of dendritic grain growth[J].Acta Materials,1997,45(05):2187-2195.
[20] CHEN Rui;XU Qing-yan;LIU Bai-cheng .Cellular automaton simulation of three-dimensional dendrite growth in Al-7Si-Mg ternary aluminum alloys[J].COMPUTATIONAL MATERIALS SCIENCE,2015,105:90-100.
[21] Rui Chen,Qingyan Xu,Baicheng Liu.A Modified Cellular Automaton Model for the Quantitative Prediction of Equiaxed and Columnar Dendritic Growth[J].材料科学技术(英文版),2014(12):1311-1320.
[22] 石玉峰 .铝合金砂型铸件微观组织及力学性能的数值模拟[D].北京:清华大学,2013.
[23] QUESTED P N;MCLEAN M .Solidification morphologies in directionally solidified superalloys[J].Material Science and Engineering,1984,65:171-180.
[24] 黄太文,刘林,张卫国,张军,傅恒志.抽拉速率跃迁对定向凝固单晶高温合金DD3一次枝晶间距和微观偏析的影响[J].金属学报,2009(10):1225-1231.
[25] HAN S H;TRIVEDI R .Primary spacing selection in directionally solidified alloys[J].Acta Metallurgica and Materialia,1994,42:25-41.
[26] DING G L;HUANG W D;HUANG X;LIN X ZHOU Y H .Onprimary dendritic spacing during unidirectional solidification[J].ACTA METALLURGICA,1996,44:3705-3709.
[27] LANGER J S;MüLLER-KRUMBHAAR H .Theory of dendritic growth-Ⅰ. Elements of a stability analysis[J].ACTA METALLURGICA,1978,26:1681-1687.
[28] 张显飞,赵九洲.合金定向凝固一次枝晶间距模拟[J].中国有色金属学报,2012(10):2868-2874.
[29] 张云鹏,林鑫,魏雷,王猛,彭东剑,黄卫东.用CA方法模拟界面能各向异性对胞晶生长形态的影响[J].物理学报,2012(22):484-491.
[30] KESSLER D A;LEVINE H .Velocity selection in dendritic growth[J].Physical Review B,1986,33:7867-7870.
[31] XU J J .Generalized needle solutions,interfacial instabilities and pattern formations[J].Physical Review E,1996,53:5051-5062.
[32] YIN H;FELICELLI S D;WANG L .Simulation of a dendrite microstructure with the lattice Boltzmann and cellular automaton methods[J].Acta Materialia,2011,59:3124-3136.
[33] 王贤斌,林鑫†,王理林,白贝贝,王猛,黄卫东.晶体取向对定向凝固枝晶生长的影响*[J].物理学报,2013(10):405-410.
[34] 杨初斌,刘林,赵新宝,刘刚,张军,傅恒志.《001》和《011》取向DD407单晶高温合金枝晶间距和微观偏析[J].金属学报,2011(10):1246-1250.
[35] GANDIN C H A;ESHELMAN M;TRIVEDI R .Orientation dependence of primary dendrite spacing[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1996,27:2727-2739.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%