欢迎登录材料期刊网

材料期刊网

高级检索

医用多孔金属材料,特别是多孔钛及钛合金能够提供与人体骨组织相匹配的力学性能,并促进骨组织长人以提高其与骨的固定度,在人体硬组织修复与替换方面具有广泛的应用前景。重点围绕多孔钛及钛合金的制备方法及适用于其复杂孔隙结构的表面生物活化方法,综述了各种方法在多孔钛及钛合金上的应用现状。目前适用于多孔钛及钛合金制备的技术主要有粉末冶金法、钛纤维烧结法、自蔓延高温合成法、选区电子束熔化技术和选区激光熔化技术,适用于多孔钛及钛合金表面生物活化的技术主要有溶胶凝胶法、仿生矿化法、电化学沉积法和微弧氧化法。多孔钛及钛合金的力学相容性和表面生物活性需要同时满足临床要求,才能进一步扩大其在医学领域的应用范围。

Biomedical porous metal materials, especially the porous titanium and titanium alloys, can provide the mechanical properties similar to human bone and promote growth of bone tissue into pores of the materials to enhance the fixation between their implants and bone at early periods of implantation, exhibiting a great potential for the application of human hard tissue repair and replacement. This paper focuses on the preparation methods and research progress of porous titanium and titanium alloys and their surface bio-activation technologies which are suitable for the complex pore structure. Nowadays, the main methods suitable for preparing porous titanium and titanium alloys include powder metallurgy (PM) , titanimn fibers sintering, self-propagating high-temperature synthesis (SHS), selective electron beam mehing (SEBM) and selective laser mehing ( SLM). Surface bio-activation technologies suitable for porous titanium and titanium alloys, including sol-gel processing, bionic solution, electrochemical deposition, and micro-arc oxidation, are also reviewed. As biomedical materials, both mechanical compatibility and surface bioactivity of porous titanium and titanium alloys must be achieved to meet clinical criteria.

参考文献

[1] Gefn A .Computational Simulations of Strrss Shielding and Bone Resorplion Around Existing and Computer-Designed Orthopaedic Serws[J].Medical and Biological Engineering and Compuiting,2002,40(03):311.
[2] Gefen A .Optimizing the biomechanical compatibility of orthopedic screws for bone fracture fixation.[J].Medical engineering and physics,2002(5):337-347.
[3] Engh C A;Young A M;Engh CA.Clinical Consequences of Stress Shielding after Porous-CoaLed Total tlip A rthroplasty[J].Clinical Orthopaedics and Related Researvb,2003(417):157-163.
[4] Moyen B J L;Iahey P J;Weinberg E H;el al .Effects on Intact Femora of Dogs of Application and Removal of Metal Plates-Meta- bolic and Slrutqural Study Comparing Stiffer and More Flexible Plates[J].Journal of Bone and Joint Sm'gery-American Volume,1978,60(07):940-947.
[5] Pilliar R M.Powder Metal-Made Orlhopedic lmplanls with Porous Surface for Fixation by Tissue lngrowt[J].Clinical Orthopoedics and Related Research,1983(176):42-51.
[6] 浦索云.金属植入材料及其腐蚀[M].Beijing Beihang University Press,1990
[7] Habibovic P;Yuan H;van der Valk CM;Meijer G;van Blitterswijk CA;de Groot K .3D microenvironment as essential element for osteoinduction by biomaterials.[J].Biomaterials,2005(17):3565-3575.
[8] Otsuki B;Takemoto M;Fujibayashi S;Neo M;Kokubo T;Nakamura T .Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: Three-dimensional micro-CT based structural analyses of porous bioactive titanium implants[J].Biomaterials,2006(35):5892-5900.
[9] Mastrogiacomo M;Scaglione S;Martinetti R;Dolcini L;Beltrame F;Cancedda R;Quarto R .Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics.[J].Biomaterials,2006(17):3230-3237.
[10] Cameron H U;Pilliar R M;Macnab I .The Rate of Bone In- growth into Porous Metal[J].Journal of Biomedical Materials Research,1976,10(02):295-302.
[11] Bobyn J D;Tanzer M;Miller J E.Fundamental Principles of Biological Fixation[A].New York:Churchill Livingstone,1995:75-94.
[12] Kujala S.;Ryhanen J.;Danilov A.;Tuukkanen J. .Effect of porosity on the osteointegration and bone ingrowth of a weight-bearing nickel-titanium bone graft substitute[J].Biomaterials,2003(25):4691-4697.
[13] Karageorgiou V;Kaplan D .Porosity of 3D biornaterial scaffolds and osteogenesis[J].Biomaterials,2005(27):5474-5491.
[14] Tithi Durra Roy;Joshua L Simon .Performance of Degradable Composite Bone Repair Products Made via Three-Dimensional Fabrication Teehniques[J].Journal of Biomedical Materials Re- search Part A,2003,66A(02):283-291.
[15] Garrett Rvan Abhay Pandit;Dimitrios Panagiotis Apatsidis.Fabrication Methods of Porous Metals tbr Use in Orthopaedic Applications[J].Biomaterials,2006(27):2651-2670.
[16] R. Singh;P. D. Lee;R. J. Dashwood;T. C. Lindley .Titanium foams for biomedical applications: a review[J].Materials Technology,2010(3/4):127-136.
[17] David C. Dunand.Processing of Titanium Foams[J].Advanced Engirwering Materials,2004(06):369-376.
[18] Ik-Hyun Oh;Naoyuki Nomura;Naoya Masahashi;Shuji Hanada .Mechanical properties of porous titanium compacts prepared by powder sintering[J].Scripta materialia,2003(12):1197-1202.
[19] Jing Zhao;Xiong Lu;Jie Weng .Macroporous Ti-based composite scaffold prepared by polymer impregnating method with calcium phosphate coatings[J].Materials Letters,2008(17/18):2921-2924.
[20] LI J P;LI S H.Cancellous Bone from Porous Ti6A14V by Multiple Coating Technique[J].Journal of Materials Science:Materials in Medicine,2006(17):179-185.
[21] Wen C E;Mabuchi M.Processing of Bioeompatible Porous Ti and Mg[J].Scril ta Materialia,2001(45):1147-1153.
[22] Singh,R;Lee,PD;Lindley,TC;Dashwood,RJ;Ferrie,E;Imwinkelried,T .Characterization of the structure and permeability of titanium foams for spinal fusion devices.[J].Acta Biomaterialia,2009(1):477-487.
[23] Wen CE;Yamada Y;Hodgson PD .Fabrication of novel TiZr alloy foams for biomedical applications[J].Materials science & engineering, C. Biomimetic and supramolecular systems,2006(8):1439-1444.
[24] Jianyu Xiong;Yuncang Li.Mechanical Properties and Bioactive Surface Modification via Alkali-Heat Treatment of Porous Ti-18Nb- 4Sn Alloy for Biomedical Applications[J].Acta Biomaterialia,2008(04):1963-1968.
[25] Imwinkelried T .Mechanical properties of open-pore titanium foam.[J].Journal of biomedical materials research, Part A,2007(4):964-970.
[26] Bogdan Dabrowski;Wojciech Swieszkowski .Highly Porous Tita- nium Scaflblds for Orthopaedic Applications[J].Journal of Bio- medical Materials Research B:Applied Biomaterials,2010,95 B(01):53-61.
[27] Goi K L S;Butler D L.Elastic Modulus of Sintered Porous Ti-Si- Zr, Using Activation by Ti-Si Mechanically Alloyed Powder and Till2 Powder[J].Materials Science aad Engineering A,2008(475):45-51.
[28] Montasser M. Dewidar;J.K. Lim .Properties of solid core and porous surface Ti-6Al-4V implants manufactured by powder metallurgy[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2008(1/2):442-446.
[29] Z. Esen;S. Bor .Processing of titanium foams using magnesium spacer particles[J].Scripta materialia,2007(5):341-344.
[30] Jifeng Sun;Yong Han;Kai Cui .Innovative fabrication of porous titanium coating on titanium by cold spraying and vacuum sintering[J].Materials Letters,2008(21/22):3623-3625.
[31] Mustafa Guden;Emrah Celik;Alpay Hizal .Effects of Compaction Pressure and Particle Shape on the Porosity and Compression Mechanical Properties of Sintered Ti6AI4V Powder Compacts for Hard Tissue Implantation[J].Journal of Biomedical Materials Research. Part B,2008(2):547-555.
[32] Nomura N;Kohama T.Mechanical Properties of Porous Ti-15 Mo- 5Zr-3AI Compacts Prepared by Powder Sintering[J].Materials Science and Engineering C,2005(25):330-335.
[33] Yuanyuan Yan;Jifeng Sun.Bioactivity of Ca, P and Sr ous Titanium by Micro-Arc Technology[J].,2010(205)
[34] Yong Han.Micmstructure and Doped TiO2 Coating Formed on Por- Oxidation[J].Surface and Coatings:702-1713.
[35] Chunming Zou;Erlin Zhang;Mingwei Li.Preparation, Microstmeture and Mechanical Properties of Porous Titanium Sin- tered by Ti Fibres[J].Journal of Materials Science:Materials in Medicine,2008(19):401-405.
[36] Guo He;Ping Liu;Qingbiao Tan.Porous Titanium Materials with Entangled Wire Structure fur Load-Bearing Biomedical Ap- plications[J].Journal of the mechanical behavior of biomedical materials,2012(05):16-31.
[37] Li B.Y.;Rong L.J. .SYNTHESIS OF POROUS Ni-Ti SHAPE-MEMORY ALLOYS BY SELF-PROPAGATING HIGH-TEMPERATURE SYNTHESIS: REACTION MECHANISM AND ANISOTROPY IN PORE STRUCTURE[J].Acta materialia,2000(15):3895-3904.
[38] Barrabes A;Sevilla P;Planell JA;Gil FJ .Mechanical properties of nickel-titanium foams for reconstructive orthopaedics[J].Materials science & engineering, C. Biomimetic and supramolecular systems,2008(1):23-27.
[39] Peter Heinl;Andreas Rottmair;Carolin Korner;Robert F. Singer .Cellular Titanium by Selective Electron BeamMelting[J].Advanced Engineering Materials,2007(5):360-364.
[40] Peter Heinl;Carolin Korner;Robert F. Singer .Selective Electron Beam Melting of Cellular Titanium: Mechanical Properties[J].Advanced Engineering Materials,2008(9):882-888.
[41] Peter Heinl;Lenka Muller.Cellular Ti-6A1-4V Structures with Interconnected Macro Porosity for Bone Implants Fabricated by Selective Electron Beam Melting[J].Acta Biomaterialia,2008(04):1536-1544.
[42] Xiang Li;Chengtao Wang;Wenguang Zhang;Yuanchao Li .Fabrication And Characterization Of Porous Ti6al4v Parts For Biomedical Applications Using Electron Beam Melting Process[J].Materials Letters,2009(3/4):403-405.
[43] Jayanthi Parthasarathy;Binil Starly.Mechanical Evaluation of Porous Ttitanium (Ti-6A1-4V) Structures with Electron Beam Melting (EBM)[J].Journal of the Mechanical Behavior of Biomedical Materials,2010:249-259.
[44] Jayanthi Parthasarathy;Binil Starly;Shivakumar Raman.The Design for Additive Manufacture of Functionally Graded Porous Structures with Tailored Mechanical Properties for Biomedical Applications[J].Journal of Manufaz'turing Processes,2011:1-11.
[45] Inayat, A.;Schwerdtfeger, J.;Freund, H.;K?rner, C.;Singer, R.F.;Schwieger, W. .Periodic open-cell foams: Pressure drop measurements and modeling of an ideal tetrakaidecahedra packing[J].Chemical Engineering Science,2011(12):2758-2763.
[46] Amer Inayat;Hannsjorg Freund.Determining Specific Surface Area of Ceramic Foams:The Tetrakaidecahedra Model Revisited[J].Chemical Engineering Science,2011(66):1179-1188.
[47] L. E. MURR;S. M. GAYTAN;F. MEDINA;H. LOPEZ;E. MARTINEZ;B. I. MACHADO;D. H. HERNANDEZ;L. MARTINEZ;M. I. LOPEZ;R. B. WICKER;J. BRACKE .Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays[J].Philosophical transactions of the Royal Society. Mathematical, physical, and engineering sciences,2010(1917):1999-2032.
[48] Murr LE;Amato KN;Li SJ;Tian YX;Cheng XY;Gaytan SM;Martinez E;Shindo PW;Medina F;Wicker RB .Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting.[J].Journal of the mechanical behavior of biomedical materials,2011(7):1396-1411.
[49] Murr L E;Gaytan S M.Additive Layered Manufacturing of Retic- ulated Ti45Al-4V Biomedical Mesh Structures by Electron Beam Melting[A].New York:IFMBE Proceedings,2009:23-28.
[50] Dirk A Hollander;Matthias Von Walter.Structural, Mechanical and in Vitro Characterization of Individually Structured Ti6A1-4V Produced by Direct Laser Forming[J].Biomaterials,2006(27):955-963.
[51] Mullen L;Stamp RC;Brooks WK;Jones E;Sutcliffe CJ .Selective Laser Melting: a regular unit cell approach for the manufacture of porous, titanium, bone in-growth constructs, suitable for orthopedic applications.[J].Journal of biomedical materials research, Part B. Applied biomaterials,2009(2):325-334.
[52] Lewis Mullen;Robin C Stamp .Selective Laser Melting:a Unit Cell Approach for the Manufacture of Pontus Titanium Bone in- Growth Constructs for Orthopedic Applications. 11. Randomized Structures[J].Journal of Biomedical Materials Research-Part B:Applied Biomaterials,2010,92(01):178-188.
[53] R. Stamp;P. Fox;W. O'Neill;E. Jones;C. Sutcliffe .The development of a scanning strategy for the manufacture of porous biomaterials by selective laser melting[J].Journal of Materials Science. Materials in Medicine,2009(9):1839-1848.
[54] Patrick H Warnke;Timothy Douglas .Rapid Prototyping: Po~us Titanium Alloy Scaffolds Produced by Selective Laser Melting for Bone Tissue Engineering[J].Tissue Engineering:Part C Methods,2009,15(02):115-124.
[55] Chia-Ying Lin;Tobias Wirtz;Frank LaMarca .Structural and mechanical evaluations of a topology optimized titanium interbody fusion cage fabricated by selective laser melting process[J].Journal of biomedical materials research, Part A,2007(2):272-279.
[56] Fukuda A;Takemoto M;Saito T;Fujibayashi S;Neo M;Pattanayak DK;Matsushita T;Sasaki K;Nishida N;Kokubo T;Nakamura T .Osteoinduction of porous Ti implants with a channel structure fabricated by selective laser melting.[J].Acta biomaterialia,2011(5):2327-2336.
[57] Gorny, B.;Niendorf, T.;Lackmann, J.;Thoene, M.;Troester, T.;Maier, H.J. .In situ characterization of the deformation and failure behavior of non-stochastic porous structures processed by selective laser melting[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2011(27):7962-7967.
[58] Van Bael, S.;Kerckhofs, G.;Moesen, M.;Pyka, G.;Schrooten, J.;Kruth, J.P. .Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti6Al4V porous structures[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2011(24):7423-7431.
[59] Pattanayak DK;Fukuda A;Matsushita T;Takemoto M;Fujibayashi S;Sasaki K;Nishida N;Nakamura T;Kokubo T .Bioactive Ti metal analogous to human cancellous bone: Fabrication by selective laser melting and chemical treatments.[J].Acta biomaterialia,2011(3):1398-1406.
[60] I. Yadroitsev;Ph. Bertrand;I. Smurov .Parametric analysis of the selective laser melting process[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2007(19):8064-8069.
[61] Manufacturing Of Fine-structured 3d Porous Filter Elements By Selective Laser Melting[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2009(10):p.5523.
[62] Y. Shen;S. McKown;S. Tsopanos .The Mechanical Properties of Sandwich Structures Based on Metal Lattice Architectures[J].Journal of Sandwich Structures and Materials,2010(2):159-180.
[63] 郑玉峰;李莉.生物医用材料学[M].Harbin:Harhin Institute of Technology Press,2005
[64] Lu Gan;Robert Pilliar.Calcium Phosphate Sol-Gel-Derived Thin Fihn.s on Porous-Surfaced Implants for Enhanced Osteconductivity. Part 1: Synthesis and Characterization[J].Biomaterials,2004(25):5303-5312.
[65] l.u Gan;Jian Wang.Calcium Phosphate Sol-Gel-Derived Thin Films on Porous-Surfaced hnplants for Enhanced Osteoconductivity Part Ⅱ: Short-Term in Vivo Studies[J].Biomaterials,2004(25):5313-5321.
[66] Lu Gan;Jian Wang;Robert M.Evaluating Interface Strength of Calcium Phosphate Sol-Gel-Derived Thin Films to Ti-6A1-4V Substrate[J].Biomaterials,2005(26):189-196.
[67] Takeuchi M;Abe Y;Yoshida Y;Nakayama Y;Okazaki M;Akagawa Y .Acid pretreatment of titanium implants.[J].Biomaterials,2003(10):1821-1827.
[68] Wang CX.;Wang M.;Zhou X. .Nucleation and growth of apatite on chemically treated titanium alloy: an electrochemical impedance spectroscopy study[J].Biomaterials,2003(18):3069-3077.
[69] Wen HB.;Dewijn JR.;Liu Q.;Cui FZ.;Degroot K.;Wolke JGC. .FAST PRECIPITATION OF CALCIUM PHOSPHATE LAYERS ON TITANIUM INDUCED BY SIMPLE CHEMICAL TREATMENTS[J].Biomaterials,1997(22):1471-1478.
[70] l.enka Jonasova;Frank A Muller.Biomimetie Apatite Formation or, Chemically Treated Titanium[J].Biomaterials,2004(25):1187-1194.
[71] Pamela Habibovic;Jiaping Li .Biological Performance of Uncoated and Octaealeium Phosphate-Coated Ti6AI4V[J].Biomaterials,2005,26:23-36.
[72] Taeseong Kim;Masahiko Suzuki;Chikara Ohtsuki .Enhancement of Bone Growth in Titanium Fiber Mesh by Surface Modification with Hydrogen Peroxide Solution Containing Tantalum Chloride[J].Journal of biomedical materials research, Part B. Applied biomaterials,2003(1):19-26.
[73] Xiao-Bo Cheu;Yun-Cang Li.Influence of Calcium ion Deposi- tiun on Apatite-lnducing Ability of Porous Titanium for Biomedical Applications[J].Acta Biomaterialia,2009(05):1808-1820.
[74] Liang FH.;Zhou L.;Wang KG. .Apatite formation on porous titanium by alkali and heat-treatment[J].Surface & Coatings Technology,2003(2):133-139.
[75] 梁芳慧,王克光,周廉.利用预钙化处理提高碱热处理多孔钛的表面生物活性[J].稀有金属材料与工程,2004(10):1013-1017.
[76] 梁芳慧,王克光,周廉.不同过饱和钙化溶液中多孔钛表面磷灰石层的形成[J].稀有金属材料与工程,2004(02):166-170.
[77] Fujibayashi S;Neo M;Kim HM;Kokubo T;Nakamura T .Osteoinduction of porous bioactive titanium metal.[J].Biomaterials,2004(3):443-450.
[78] Takemoto M;Fujibayashi S;Neo M;Suzuki J;Kokubo T;Nakamura T .Mechanical properties and osteoconductivity of porous bioactive titanium[J].Biomaterials,2005(30):6014-6023.
[79] Mitsuru Takemoto;Shunsuke Fujibayashi.Osteoinductive Porous Titanium hnplants: Effect of Sodium Removal by Dilute liC1 Treatment[J].Biomaterials,2006(27):2682-2691.
[80] Ankur Raval;Animesh Choubey;Chhaya Engineer;Devesh Kothwala .Development and assessment of 316LVM cardiovascular stents[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2004(1/2):331-343.
[81] Shirkhanzadeh M.Bioaetive Calcium Phosphate Coatings Prepared by Electrodeposition[J].Journal of Materials Science Letter t,1991(10):1415-1417.
[82] Zhang Q;Leng Y;Xin R .A comparative study of electrochemical deposition and biomimetic deposition of calcium phosphate on porous titanium.[J].Biomaterials,2005(16):2857-2865.
[83] Sun Jifeng;Han Yong;Cui Kai .Microstrueture and Apatite- Forming Ability of MAO-Treated Porous Titanium[J].Surface and Coatings Technology,2008,202(17):4248-4256.
[84] Yong Hart;Jianhong Zhou.A Multi-Scaled ttybrid Orthopedic Implant:Bone ECM-Shaped St-HA Nanofibers on the Micro- porous Walls of a Macroporous Titanium Scaf:fbld[J].Nanotechn- ology,2011(22):275603.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%