欢迎登录材料期刊网

材料期刊网

高级检索

铜基复合材料具有优异的性能及广泛的应用,而随着其应用的愈加广泛,对其摩擦磨损性能的要求也愈加严格.综述了国内外颗粒增强、石墨自润滑、纤维增强和碳纳米管增强铜基复合材料的摩擦磨损性能,并简述了目前铜基复合材料存在的一些问题及展望.

参考文献

[1] Hirotaka Kato;Masahiro Takama;Yoshiro Iwai;Kazuo Washida;Yoshinori Sasaki .Wear and mechanical properties of sintered copper-tin composites containing graphite or molybdenum disulfide[J].Wear: an International Journal on the Science and Technology of Friction, Lubrication and Wear,2003(1/6):573-578.
[2] Zhu, H.;Jiang, Y.;Song, J.;Li, J.;Munroe, P.;Xie, Z. .In situ synthesis and characterization of a hierarchically structured Al_2O_3/Al_3Ti composite[J].Journal of Materials Science,2013(2):929-935.
[3] Farid Akhtar;Syed Javid Askari;Khadijah Ali Shah .Microstructure, mechanical properties, electrical conductivity and wear behavior of high volume TiC reinforced Cu-matrix composites[J].Materials Characterization,2009(4):327-336.
[4] Zhu Heguo;Jiang Yalin;Yao Yinqun et al.Reaction pathways,activation energies and mechanical properties of hybrid composites synthesized in-situ from Al-TiO2-C powder mixtures[J].Materials Chemistry and Physics,2012,137(2):532.
[5] Y. Zhang;H.L. Zhang;J.H. Wu .Enhanced thermal conductivity in copper matrix composites reinforced with titanium-coated diamond particles[J].Scripta materialia,2011(12):1097-1100.
[6] Saeed Reza Allahkaram;Setareh Golroh;Morteza Mohammadalipour .Properties of A1_2O_3 nano-particle reinforced copper matrix composite coatings prepared by pulse and direct current electroplating[J].Materials & design,2011(8/9):4478-4484.
[7] S. Azem;M. Nechiche;K. Taibi .Development of copper matrix composite reinforced with FeAl particles produced by combustion synthesis[J].Powder Technology: An International Journal on the Science and Technology of Wet and Dry Particulate Systems,2011(2):515-520.
[8] Adem Onat;Hatem Akbulut;Fevzi Yilmaz .Production and characterisation of silicon carbide participate reinforced aluminium-copper alloy matrix composites by direct squeeze casting method[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2007(1/2):375-382.
[9] Ding Donghai;Zhou Wancheng;Luo Fa et al.Influence of pyrolytics carbon coatings on complex permittivity and microwave absorbing properties of Al2 O3 fiber woven fabrics[J].Transactions of Nonferrous Metals Society of China,2012,22(2):354.
[10] Wu, Z.;Kang, P.C.;Wu, G.H.;Guo, Q.;Chen, G.Q.;Jiang, L.T..The effect of interface modification on fracture behavior of tungsten fiber reinforced copper matrix composites[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2012:45-48.
[11] Ríos A;Martín-Meizoso A;You J H et al.Micromechanical model of 3D cross-ply copper matrix composite reinforced with SiC fibers[J].Eng Failure Anal,2009,16(8):2559.
[12] Kiyoshi Mizuuchi;Kanryu Inoue;Masami Sugioka .Microstructure and mechanical properties of boron-fiber-reinforced titanium-matrix composites produced by pulsed current hot pressing (PCHP)[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2006(1/2):175-179.
[13] 张红霞,胡树兵,涂江平.颗粒增强铜基复合材料的研究进展[J].材料科学与工艺,2005(04):357-360,364.
[14] 任阔 .纳米颗粒增强铜基复合材料的制备工艺及其性能研究[D].合肥工业大学,2009.
[15] K. Rajkumar;S. Aravindan .Tribological performance of microwave sintered copper-TiC-graphite hybrid composites[J].Tribology International,2011(4):347-358.
[16] Fathy A;Shehata F;Abdelhaneed M et al.Compressive and wear resistance of nanometric alumina reinforced copper matrix composites[J].Meter Des,2012,36:100.
[17] Eunji Hong;Bradley Kaplin;Taehoon You;Min-soo Suh;Yong-Suk Kim;Heeman Choe .Tribological properties of copper alloy-based composites reinforced with tungsten carbide particles[J].Wear: an International Journal on the Science and Technology of Friction, Lubrication and Wear,2011(9/10):591-597.
[18] ZHENG Runguo,ZHAN Zaiji,WANG Wenkui.Tribological properties of Cu-La2O3 composite under different electrical currents[J].稀土学报(英文版),2011(03):247-252.
[19] ZHANG Mei-juan,YANG Xiao-hong,LIU Yong-bing,CAO Zhan-yi,CHENG Li-ren,PEI Ya-li.Effect of graphite content on wear property of graphite/Al_2O_3/Mg-9Al-1Zn-0.8Ce composites[J].中国有色金属学报(英文版),2010(02):207-211.
[20] Akhlaghi F;Zare-Bidaki A .Influence of graphite content on the dry sliding and oil impregnated sliding wear behavior of Al 2024-graphite composites produced by in situ powder metallurgy method[J].WEAR,2009,266(1-2):37.
[21] Liu Ru-Tie;Xiong Xiang;Chen Fu-Sheng;Lu Jin-zhong;Hong Li-Ling;Zhang Yi-Qing .Tribological performance of graphite containing tin lead bronze-steel bimetal under reciprocal sliding test[J].Tribology International,2011(2):101-105.
[22] K. Rajkumar;K. Kundu;S. Aravindan;M.S. Kulkarni .Accelerated wear testing for evaluating the life characteristics of copper-graphite tribological composite[J].Materials & design,2011(5):3029-3035.
[23] 赵清碧,许少凡,江沣,袁传勇.镀铜二硼化钛-碳纤维增强铜-石墨基复合材料的性能研究[J].兵器材料科学与工程,2009(01):67-69.
[24] 周年润,许传凯,胡振青,章四琪.铜基石墨复合材料的研究进展[J].材料导报,2009(z1):465-469.
[25] 焦明华,尹延国,俞建卫,解挺,杜春宽,刘焜.镀镍石墨粉与铜基自润滑材料摩擦磨损特性研究[J].摩擦学学报,2007(05):492-496.
[26] 余丽,袁成清.双氧水环境下金属腐蚀磨损机制研究进展[J].润滑与密封,2008(10):95-99.
[27] 刘元,李长生,唐华,丁健,廖东侯.纳米NbSe2铜基自润滑复合材料的摩擦学性能[J].润滑与密封,2010(06):50-53,59.
[28] WANG Juan,FENG Yi,LI Shu,LIN Shen.Influence of graphite content on sliding wear characteristics of CNTs-Ag-G electrical contact materials[J].中国有色金属学会会刊(英文版),2009(01):113-118.
[29] 龙卧云,丁晓坤,杨晓华,林智群,任文辉,李雪松.碳纤维增强铜基复合材料的性能研究[J].理化检验-物理分册,2006(08):379-381.
[30] Xu Jincheng;Yu Hui;Xia Long et al.Effects of some factors on the tribological properties of the short carbon fiber reinforced copper composite[J].Materials and Design,2004,25(6):489.
[31] Yiping Tang;Hezhou Liu;Haijun Zhao;Lei Liu;Yating Wu .Friction and wear properties of copper matrix composites reinforced with short carbon fibers[J].Materials & Design,2008(1):257-261.
[32] Ding T;Chen G X;Bu J et al.Effect of temperature and arc discharge on friction and wear behaviors of carbon strip/copper contact wire in pantograph-catenary systems[J].WEAR,2011,271(9-10):1629.
[33] C.S. Ramesh;R. Noor Ahmed;M.A Mujeebu;M.Z. Abdullah .Development and performance analysis of novel cast copper-SiC-Gr hybrid composites[J].Materials & design,2009(6):1957-1965.
[34] 赵清碧 .陶瓷颗粒Ti<,3>SiC<,2>-碳纤维弥散强化铜基复合材料组织和性能研究[D].合肥工业大学,2009.
[35] 夏龙,张文丛,徐金城.短碳纤维增强铜合金复合材料的摩擦磨损机理研究[J].粉末冶金工业,2009(03):17-23.
[36] Kenneth Kar Ho Wong;Martin Zinke-Allmang;Jeffery L. Hutter .The effect of carbon nanotube aspect ratio and loading on the elastic modulus of electrospun poly(vinyl alcohol- carbon nanotube hybrid fibers[J].Carbon: An International Journal Sponsored by the American Carbon Society,2009(11):2571-2578.
[37] Keith R. Paton;Alan H. Windle .Efficient microwave energy absorption by carbon nanotubes[J].Carbon: An International Journal Sponsored by the American Carbon Society,2008(14):1935-1941.
[38] Wen-Tai Hong;Nyan-Hwa Tai .Investigations on the thermal conductivity of composites reinforced with carbon nanotubes[J].Diamond and Related Materials,2008(7/10):1577-1581.
[39] Zhou Shengming;Zhang Xiaobin;Ding Zhipeng et al.Fabrication and tribological properties of carbon nanotubes reinforced Al composites prepared by pressureless infiltration technique[J].COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING,2007,38(2):301.
[40] 康建立 .铜基体上原位合成碳纳米管(纤维)及其复合材料的性能[D].天津大学,2009.
[41] Lin C B;Chang Zuechin;Tung Y H et al.Manufacturing and tribological properties of copper matrix/carbon nanotubes composites[J].WEAR,2011,270(5-6):382.
[42] 许玮,胡锐,李金山,傅恒志.电流对碳纳米管增强铜基复合材料载流摩擦学性能的影响[J].中国有色金属学报(英文版),2011(10):2237-2241.
[43] Rajkumar K;Aravindan S .Tribological studies on microwave sintered copper-carbon nanotube composites[J].WEAR,2011,270(9-10):613.
[44] Kyung Tae Kim;Seung Il Cha;Soon Hyung Hong .Hardness and wear resistance of carbon nanotube reinforced Cu matrix nanocomposites[J].Materials Science & Engineering. A, Structural Materials: Properties, Microstructure and Processing,2007(1/2):46-50.
[45] 王常川,王日初,彭超群,冯艳,韦小凤.金属基固体自润滑复合材料的研究进展[J].中国有色金属学报,2012(07):1945-1955.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%