基于三体摩擦体系,综述了摩擦第三体理论研究的发展与现状.第三体由存留在摩擦表面的磨损粒子构成,其形态、运动方式与材料成分和摩擦条件密切相关,从而影响材料的摩擦磨损性能.第三体具有颗粒区和压实区两种形貌,二者处于相互转化的动态过程并起到转移载荷的作用;第三体的4种运动方式对第一体起到速度协调的作用;第三体流量循环的构建有助于理解材料的磨损特性.这些机构的揭示为认识材料的摩擦磨损性能奠定了基础.
参考文献
[1] | Koji Kato .Wear in relation to friction -- a review[J].Wear: an International Journal on the Science and Technology of Friction, Lubrication and Wear,2000(2):151-157. |
[2] | Holinski R;Hesse D .Changes at Interfaces of Friction Components during Braking[J].Automotive Engineer,2003,217:765-770. |
[3] | W.(O)STERLE,帅平.制动装置的摩擦和磨损引起化学成分和金相组织的改变[J].国外机车车辆工艺,2003(04):19-24. |
[4] | Makoto O;Liou N;Vikas P et al.Tribology of High-Speed Metal-on-Metal Sliding at Near-Metal and Fully-Melt Interfacial Temperatures[J].Wear,2001,249:672-686. |
[5] | Godet M .The Third Body Approach,a Mechanical View of Wear[J].WEAR,1984,100:437-452. |
[6] | Jacko M G .The Role of Friction Film in Friction[J].WEAR,1991,146:89-97. |
[7] | Borjesson M;Eriksson P;Kuylenstierna C.[A].London:Institute of Mechanical Engineering,1993:259-268. |
[8] | Liu T;Rhee .A Study of Wear Rates and Transfer Films of Friction Materials[J].WEAR,1980,60(01):1-12. |
[9] | Ludema K.[M].Amsterdam:Elsevier Science,1996:3-19. |
[10] | Berthier Y.[M].Amsterdam:Elsevier Science,1996:21-30. |
[11] | Vodopives F;Vizintin J.Effect of Fretting Amplitude on the Microstructure of a 1 Percent C and 1.5 Percent Cr Steel[J].Journal of Materials Science and Technology,1996(12):355-360. |
[12] | Wirth A;Eggleston D .A Fundamental Tribochemical Study of the Third Body Layer Formed during Automotive Friction Braking[J].Wear,1994,179:75-81. |
[13] | Copin R;Bodoville G.European Conference on Breaking[M].Lille:AGIR,1998:141-150. |
[14] | 徐润泽;黄国伟;李金鹏.现代摩擦材料[M].北京:冶金工业出版社,1983 |
[15] | Berthier Y;Descartes S;Busquetm M.Fatigue Fracture Engineering Material Structure[M].Hoboken,NJ:Blackwell Publishing Ltd,2004:423-436. |
[16] | Descartes S;Borthier Y .Rheology and Flows of Third Bodies:Background and Application to an MoS Coating[J].Wear,2002,252:546-556. |
[17] | Eriksson M;Jacobson S .Triboiogical Surface of Organic Brake Pads[J].Tribology International,2000,33:817-827. |
[18] | D. Majcherczak;P. Dufrenoy;Y. Berthier;M. Nait-Abdelaziz .Experimental thermal study of contact with third body[J].Wear: an International Journal on the Science and Technology of Friction, Lubrication and Wear,2006(5/6):467-476. |
[19] | 符蓉,宋宝韫,高飞,徐振越.Cu-SiO2烧结材料的摩擦磨损性能研究[J].摩擦学学报,2007(04):377-381. |
[20] | I. Iordanoff;Y. Berthier;S. Descartes;H. Heshmat .A Review of Recent Approaches for Modeling Solid Third Bodies[J].Journal of Tribology,2002(4):725-735. |
[21] | Berthier Y.Background on Friction and Wear[M].North American:Academic Press,2001:676-699. |
[22] | Singer I L;Dvorak S D;Wahl K J.[A].Finland:Porvo,2000:11-14. |
[23] | S. D. Dvorak;K. J. Wahl;I. L. Singer .In Situ Analysis of Third Body Contributions to Sliding Friction of a Pb-Mo-S Coating in Dry and Humid Air[J].Tribology letters,2007(3):263-274. |
[24] | Martin J M;Gressiord C;Mogne T L et al.Transfer Films and Friction under Boundary[J].Wear,2000,245:107-115. |
[25] | 车建明.载荷、速度对碳/铜复合材料摩擦表面自润滑固体膜性能的影响[J].润滑与密封,2004(02):1-2,8. |
[26] | 高义民 .蒸馏水润滑下Si3N4-白口铸铁摩擦面上表面膜形成过程的观察[J].机械科学与技术,1999,18(03):478-480. |
[27] | 李江鸿,熊翔,张红波,于澍,肖鹏,黄伯云.不同刹车压力下C/C复合材料的摩擦性能与摩擦面研究[J].润滑与密封,2007(04):9-13. |
[28] | 肖鹏,熊翔,任芸芸.制动速度对C/C-SiC复合材料摩擦磨损性能的影响[J].摩擦学学报,2006(01):12-17. |
[29] | T. W. Scharf;I. L. Singer .Monitoring transfer films and friction instabilities with in situ Raman tribometry[J].Tribology letters,2003(1):3-8. |
[30] | Uyyuru R K;Surappah M K;Brusethang S et al.Tribological Behavior of Al-Si-SiCp Composites/Automobile Broke Pad System under dry Sliding Conditions[J].Tribology,2007,40:365-373. |
[31] | Xu Guizhen;Zhou Zhongrong.The Effect of Third Body on the Fretting Wear Behavior of Coatings[J].Journal of Materials Engineering and Performance,2002(11):288-293. |
[32] | 王延军 .氧化铝陶瓷涂层与球墨铸铁的摩擦磨损特性及机理的研究[J].辽宁工学院学报(自然科学版),1997,17(04):1-4. |
[33] | 苏堤,罗成,潘运娟.树脂基汽车复合摩擦材料的磨损机理[J].粉末冶金材料科学与工程,2007(04):221-224. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%