结合[火积]耗散极值原理和构形理论,以基于[火积]耗散率的当量热阻最小化为目标,采用解析解法对Y形肋片进行了构形优化,分析了复合参数α(关于对流换热系数、肋片的包络面积及其热导率的简单函数)和肋片占比Ф1对Y形肋片优化的影响,并比较Y形和T形肋片的整体传热性能的优劣。结果表明,增大α和增大Ф1可降低肋片的无量纲当量热阻,改善其整体传热性能。总体积和肋片材料的体积都相同时,Y形肋片无量纲当量热阻要比T形肋片的无量纲当量热阻小很多。也就是说,Y形肋片优于T形肋片,更能提高系统的整体传热性能。
The constructal optimization for Y-shaped assembly of fins with the minimization of mean thermal resistance defined based on entransy dissipation rate is conducted by combining entransy dissipation extremum principle and constructal theory and adoping analytical method. The influences of the complex parameter, α, which is a simple function of the heat transfer coefficient of fin over all the exposed surfaces, the cross-sectional flow area of the assembly and its thermal conductivity, and the fraction of fin material, Ф1, on the heat conductance performance of the assembly of fins are analyzed, and the heat conductance performances between Y-shaped and T-shaped assemblies of fins are compared. The results show that the mean thermal resistance of the assembly is smaller as both a and Ф1 increase, and thus the heat conductance performance is improved. The mean thermal resistance of Y-shaped assembly is much smaller than that of T-shaped assembly when their total volume and their volume of fin materials are both equal. That is to say, Y-shaped assembly is better than T-shaped assembly and improves the heat conductance performance more.
参考文献
[1] | Qinghua Xiao;Lingen Chen;Fengrui Sun .Constructal optimization for "disc-to-point" heat conduction without the premise of optimized last-order construct[J].International Journal of Thermal Sciences,2011(6):1031-1036. |
[2] | Z.Y. Guo;W.Q. Tao;R.K. Shah .The field synergy (coordination) principle and its applications in enhancing single phase convective heat transfer[J].International Journal of Heat and Mass Transfer,2005(9):1797-1807. |
[3] | LIU Wei,LIU ZhiChun,GUO ZengYuan.Physical quantity synergy in laminar flow field of convective heat transfer and analysis of heat transfer enhancement[J].科学通报(英文版),2009(19):3579-3586. |
[4] | A. Bejan;N. Dan .Constructal trees of convective fins[J].Journal of heat transfer: Transactions of the ASME,1999(3):675-682. |
[5] | A.ALEBRAHIM;A.BEJAN .CONSTRUCTAL TREES OF CIRCULAR FINS FOR CONDUCTIVE AND CONVECTIVE HEAT TRANSFER[J].International Journal of Heat and Mass Transfer,1999(19):3585-3597. |
[6] | Adrian Bejan;Majed Almogbel .Constructal t-shaped fins[J].International Journal of Heat and Mass Transfer,2000(12):2101-2115. |
[7] | Majed A. Almogbel .Constructal tree-shaped fins[J].International Journal of Thermal Sciences,2005(4):342-348. |
[8] | Giulio Lorenzini;Luiz Alberto Oliveira Rocha .Constructal design of Y-shaped assembly of fins[J].International Journal of Heat and Mass Transfer,2006(23/24):4552-4557. |
[9] | Giulio Lorenzini;Luiz Alberto Oliveira Rocha .Constructal design of T-Y assembly of fins for an optimized heat removal[J].International Journal of Heat and Mass Transfer,2009(5/6):1458-1463. |
[10] | GUO Zengyuan,CHENG Xinguang,XIA Zaizhong.Least dissipation principle of heat transport potential capacity and its application in heat conduction optimization[J].科学通报(英文版),2003(04):406-410. |
[11] | Lingen Chen;Shuhuan Wei;Fengrui Sun .Constructal entransy dissipation minimization of an electromagnet[J].Journal of Applied Physics,2009(9):094906-1-094906-9. |
[12] | Lingen Chen;Shuhuan Wei;Fengrui Sun .Constructal entransy dissipation rate minimization of a disc[J].International Journal of Heat and Mass Transfer,2011(1/3):210-216. |
[13] | Shuhuan WEI;Lingen CHEN;Fengrui SUN .CONSTRUCTAL ENTRANSY DISSIPATION MINIMIZATION FOR "VOLUME-POINT" HEAT CONDUCTION BASED ON TRIANGULAR ELEMENT[J].Thermal science,2010(4):1075-1088. |
[14] | XIE ZhiHui,CHEN LinGen,SUN FengRui.Constructal optimization on T-shaped cavity based on entransy dissipation minimization[J].科学通报(英文版),2009(23):4418-4427. |
[15] | XIAO QingHua,CHEN LinGen,SUN FengRui.Constructal entransy dissipation rate and flow-resistance minimizations for cooling channels[J].中国科学:技术科学(英文版),2010(09):2458-2468. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%