建立了复合材料层合加筋壁板的屈曲后屈曲有限元分析模型.该模型采用界面单元以有效模拟筋条和壁板之间的连接界面,连接界面和复合材料层板分别采用Quads和Hashin失效准则作为失效判据,引入材料刚度退化模型,采用非线性有限元方法,研究了复合材料加筋壁板在压缩载荷下的前后屈曲平衡路径及破坏过程.数值分析结果与实验结果吻合良好,证明了该方法的合理有效性.详细探讨了筋条尺寸及界面单元强度等参数对加筋壁板屈曲后屈曲行为及承载能力的影响规律,研究表明增加筋条截面惯性矩及筋条密度在一定程度上能有效提高加筋板的屈曲载荷与极限强度,筋条密度增加到一定程度会引起结构破坏形式由失稳破坏转变为压缩破坏,界面强度与铺层方式对极限强度有重要影响,界面脱粘是引起加筋板最终破坏的重要因素.
参考文献
[1] | 陈伟,许希武.复合材料双曲率壳屈曲和后屈曲的非线性有限元研究[J].复合材料学报,2008,25(2):178-187.Chen Wei,Xu Xiwu.Buckling and postbuckling response analysis of the doubly-curved composite shell by nonlinear FEM[J].Acta Materiae Compositae Sinica,2008,25(2):178-187. |
[2] | Zimmermann R,Klein H,Kling A.Buckling and postbuckling of stringer stiffened fibre composite curved panels-Tests and computations[J].Composite Structures,2006,73:150-161. |
[3] | Vancampen D H.Semi-analytical stability analysis of doubly curved orthotropic shallow panels considering the effects of boundary conditions[J].International Journal of Non-Linear Mechanics,2002,37:659-667. |
[4] | Zhang J Z.Stability and bifurcation of doubly curved shallow panels under quasi-static uniform load[J].International Journal of Non-Linear Mechanics,2003,38:457-466. |
[5] | Chiara B,Riccardo V.Analytical formulation for local buckling and post-buckling analysis of stiffened laminated panels[J].Thin-Walled Structures,2008,47(3):318-334. |
[6] | 宁晋建,章怡宁,黄宝宗,刘均.复合材料加筋壁板的后屈曲逐步损伤及承载能力研究[J].飞机设计,2006(3):7-10.Ning Jinjian,Zhang Yining,Huang Baozong,Liu Jun.Study on the postbuckling behavior and load carrying capabilities of stiffened composite panels[J].Aircraft Design,2006(3)7-10. |
[7] | Atevens K A,Ricci R,Davies G A O.Buckling and postbuckling of composite structures[J].Composites,1995,26(3):189-199. |
[8] | Kong C W,Lee I C,Kim C G,Hong C S.Post-buckling and failure of stiffened composite panels under axial compression[J].Composite Structures,1998,42(1):13-21. |
[9] | Adrian C O,I(n)igo Ortiz de Zarate Alberdi,Rodney S T,Javid Bayandor.Compression and post-buckling damage growth and collapse analysis of flat composite stiffened panels[J].Composites Science and Technology,2008,88:3150-3160. |
[10] | Benzeggagh M,Kenane M.Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus[J].Composite Science and Technology,1996,56(4):439-449. |
[11] | Raju I S,Calculation of strain-energy release rates with higher order and singular finite elements[J].Engineering Fracture Mechanics,1987,28:251-274. |
[12] | Li X Q,Stephen R H,Michael R.Wisnom predicting the effect of through-thickness compressive stress on delamination using interface elements[J].Composites Part A,2008,39:218-230 |
[13] | Camanho P P,Dávila C G.Mixed-mode decohesion elements for the simulation of delamination in composite materials,NASA/TM 2002-211737[R].Washington:NASA,2002. |
[14] | Davila C G,Camanho P P.Analysis of the effects of residual strains and defects on skin/stiffener debonding using decohesion elements[J].AIAA,2003,2003-1465. |
[15] | Dudgale D S.Yielding of steel sheets containing slits[J].Journal of Mechanics and Physics of Solids,1960,8:100-104. |
[16] | Barenblatt G I.Mathematical theory of equilibrium cracks in brittle failure[J].Advances in Applied Mechanics,1962,7:55-129. |
[17] | Hashin Z.Failure criteria for unidirectional fiber composites[J].Journal of Applied Mechanics,1980,47:329-334. |
[18] | 中国航空研究院.复合材料结构稳定性分析指南[M].北京:航空工业出版社,2002:79-86. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%