In situ straining in a high-resolution transmission electron microscope and molecular dynamics simulations reveal a new deformation twinning mechanism in the face-centered-cubic structure. A twin forms via the simultaneous and cooperative activation of different Shockley partial dislocations on three (1 1 1) layers. The synchronized slip produces a zero net Burgers vector; such twining relieves local stress concentration in a shear confined to adjacent atomic layers, but induces no macroscopic shape change of the surrounding crystal. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
参考文献
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%