研究了利用磁控溅射方法制备的柔性硬质纳米复合涂层.结果表明柔性硬质纳米复合涂层具有以下优异性能:是一类具有高硬度、高韧性以及抗裂纹性能的新型涂层;具有较高的硬度模量比(H/E*≥0.1,E*=E/(1-v2))、弹性恢复系数(We≥60%)、压应力(σ<0)L,且少缺陷的微观结构;生长处于Thornton结构区域相图的T区.磁控溅射非常适合制备纳米复合涂层,文中将对其制备柔性纳米复合薄膜的机理做深入阐述.涂层生长主要受以下3个参数影响:涂层生长过程中吸收的能量Ep,其包含沉积原子携带的能量Eca和轰击离子携带等能量Ebi(Ep=Eca+Ebi),基体温度Ts和涂层材料的熔点Tm.柔性硬质涂层具有广泛的应用前景,如柔性保护涂层、柔性功能涂层、防脆性涂层开裂的柔性保护涂层以及柔性多层涂层.文中还将详细阐述低温磁控溅射制备柔性纳米复合涂层的原理,并阐述纳米复合涂层及其性能的发展趋势.
参考文献
[1] | A. A. Voevodin;J. S. Zabinski.Superhard, functionally gradient, nanolayered and nanocomposite diamond-like carbon coatings for wear protection[J].Diamond and Related Materials,19982/5(2/5):463-467. |
[2] | J. Musil.Hard and superhard nanocomposite coatings[J].Surface & Coatings Technology,20001/3(1/3):322-330. |
[3] | H.Gleiter.Nanostructured materials: basic concepts and microstructure[J].Acta materialia,20001(1):1-29. |
[4] | A. Leyland;A. Matthews.On the significance of the H/E ration in wear control: a nanocomposite coating approach to optimised tribological behaviour[J].Wear: an International Journal on the Science and Technology of Friction, Lubrication and Wear,20001/2(1/2):1-11. |
[5] | R A Andrievskii.Thermal stability of nanomaterials[J].Russian Chemical Reviews: Reviews on Current Topics in Chemistry,200210(10):853-866. |
[6] | Joerg Patscheider.Nanocomposite Hard Coatings for Wear Protection[J].MRS bulletin,20033(3):180-183. |
[7] | R A Andrievski.Nanomaterials based on high-melting carbides,nitrides and borides[J].Russian Chemical Reviews: Reviews on Current Topics in Chemistry,200512(12):1061-1072. |
[8] | Paul H. Mayrhofer;Christian Mitterer;Lars Hultman;Helmut Clemens.Microstructural design of hard coatings[J].Progress in materials science,20068(8):1032-1114. |
[9] | Lu CS;Mai YW;Shen YG.Recent advances on understanding the origin of superhardness in nanocomposite coatings: A critical review[J].Journal of Materials Science,20063(3):937-950. |
[10] | J. Musil;M. Jirout.Toughness of hard nanostructured ceramic thin films[J].Surface & Coatings Technology,20079/11(9/11):5148-5152. |
[11] | A D Pogrebnjak;A P Shpak;N A Azarenkov;V M Beresnev.Structures and properties of hard and superhard nanocomposite coatings[J].Physics - Uspekhi,20091(1):29-54. |
[12] | J. Musil.Recent Progress in Hard Nanocomposite Coatings - Part 2[J].Galvanotechnik: Leiterplatten-Technik,20109(9):2116-2121. |
[13] | J. Blazek;J. Musil;P. Stupka;R. Cerstvy;J. Houska.Properties of nanocrystalline Al-Cu-0 films reactively sputtered by DC pulse dual magnetron[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,20115(5):1762-1767. |
[14] | Rossnagel SM..DIRECTIONAL AND PREFERENTIAL SPUTTERING-BASED PHYSICAL VAPOR DEPOSITION [Review][J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,19951(1):1-12. |
[15] | W. D. Sproul.High-rate reactive DC magnetron sputtering of oxide and nitride superlattice coatings[J].Vacuum: Technology Applications & Ion Physics: The International Journal & Abstracting Service for Vacuum Science & Technology,19984(4):641-646. |
[16] | J. Musil.Low-pressure magnetron sputtering[J].Vacuum,19983/4(3/4):363-372. |
[17] | R. D. Arnell;P. J. Kelly.Recent advances in magnetron sputtering[J].Surface & Coatings Technology,19991/3(1/3):170-176. |
[18] | P. J. Kelly;R. D. Arnell.Magnetron sputtering: a review of recent developments and applications[J].Vacuum: Technology Applications & Ion Physics: The International Journal & Abstracting Service for Vacuum Science & Technology,20003(3):159-172. |
[19] | W.D. Sproul;D. J. Christie;D.C. Carter.Control of reactive sputtering processes[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,20051/2(1/2):1-17. |
[20] | Jindrich Musil;Pavel Baroch.High-rate pulsed reactive magnetron sputtering of oxide nanocomposite coatings[J].Vacuum: Technology Applications & Ion Physics: The International Journal & Abstracting Service for Vacuum Science & Technology,2013:96-102. |
[21] | H. Polakova;J. Musil;J. Vlcek;J. Allaart;C. Mitterer.Structure-hardness relations in sputtered Ti-Al-V-N films[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,20031/2(1/2):189-198. |
[22] | J.Musil;J.Vlcek.Magnetron sputtering of alloy-based films and its specificity[J].Czechoslovak Journal of Physics,199810(10):1209-1224. |
[23] | J. Musil;Republic;J. Suna.The Role of Energy in Formation of Sputtered Nanocomposite Films[J].Materials Science Forum,20050(0):291-296. |
[24] | J. Musil;J. Sicha;D. Herman;R. Cerstvy.Role of energy in low-temperature high-rate formation of hydrophilic TiO_(2) thin films using pulsed magnetron sputtering[J].Journal of Vacuum Science & Technology, A. Vacuum, Surfaces, and Films,20074(4):666-674. |
[25] | Vlcek J;Pajdarova AD;Musil J.Pulsed dc magnetron discharges and their utilization in plasma surface engineering[J].Contributions to Plasma Physics,20045/6(5/6):426-436. |
[26] | Helmersson U;Lattemann M;Bohlmark J;Ehiasarian AP;Gudmundsson JT.Ionized physical vapor deposition (IPVD): A review of technology and applications[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,20061/2(1/2):1-24. |
[27] | J. Vlcek;P. Kudlacek;K. Burcalova;J. Musil.Ion flux characteristics in high-power pulsed magnetron sputtering discharges[J].EPL,20074(4):45002-p1-45002-p5-0. |
[28] | P Poolcharuansin;J W Bradley.Short- and long-term plasma phenomena in a HiPIMS discharge[J].Plasma Sources Science & Technology,20102(2):025010:1-025010:13. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%