工程热物理学报 , 2003, 24(3): 445-447.
潜热型热功能流体强化换热分析
1.中国科学院研究生院物理系,北京,100039
2.中国科学院研究生院物理系,北京,100039
{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"对三维旋流喷雾燃烧进行了初步的直接数值模拟,其中液滴蒸发采用无限热传导蒸发模型描述,气相燃烧采用自适应单步反应机理,液滴的跟踪在拉格朗日框架中进行.模拟结果表明,喷雾燃烧的火焰结构十分复杂,仅采用传统的非预混燃烧模型是不够的.在蒸发和燃烧共存并存在强烈相互作用的区域,组分与混合物份额之间存在着复杂的关联,这给发展精确的湍流喷雾燃烧模型带来了挑战.","authors":[{"authorName":"罗坤","id":"1cfdc719-3327-4eb6-92f1-d87b90efd58f","originalAuthorName":"罗坤"},{"authorName":"樊建人","id":"841d0196-c924-49b5-bd9e-a5239aa19387","originalAuthorName":"樊建人"},{"authorName":"岑可法","id":"eec86989-1c0b-4ca7-b1c1-a8148eaf3c12","originalAuthorName":"岑可法"}],"doi":"","fpage":"2035","id":"8b32e323-1fd1-40cf-9e2f-e2e62adcb29a","issue":"12","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"21c1b689-146a-4b66-b5b6-16a66a6a1732","keyword":"喷雾燃烧","originalKeyword":"喷雾燃烧"},{"id":"7acac85f-58ac-436c-885f-636cbb9346cd","keyword":"液滴蒸发","originalKeyword":"液滴蒸发"},{"id":"844ab4d3-3f35-4314-8675-2eb9609ad427","keyword":"旋流射流","originalKeyword":"旋流射流"},{"id":"1292d444-5366-41f2-b666-8f9fe9f1cc37","keyword":"非预混燃烧","originalKeyword":"非预混燃烧"},{"id":"67d5ac97-c3ec-4839-9481-0e0f19d46424","keyword":"直接数值模拟","originalKeyword":"直接数值模拟"}],"language":"zh","publisherId":"gcrwlxb201012014","title":"旋流喷雾燃烧的直接数值模拟","volume":"31","year":"2010"},{"abstractinfo":"采用有限差分方法对不同工况下三维旋流液雾燃烧进行了直接数值模拟,其中液滴的跟踪在拉格朗日框架中进行,液滴的蒸发相变采用无限热传导蒸发模型描述,气相燃烧采用自适应单步反应机理,模拟中采用的模型燃烧器尽可能逼近真实的燃气轮机旋流燃烧器.结果发现,旋流液雾燃烧流动和火焰结构受到旋流方式和当量比的影响,流场中出现了反平行排列的涡管结构.且各种工况F液雾燃烧火焰都是由贫燃预混火焰,富燃预混火焰、扩散火焰构成.这些给液雾燃烧的模型模拟带来了新的挑战.","authors":[{"authorName":"罗坤","id":"1317ae37-4745-4d31-8dfc-6a163e96cb31","originalAuthorName":"罗坤"},{"authorName":"戴瑞","id":"7a2329d2-49be-400a-b3ac-8e5d334145f9","originalAuthorName":"戴瑞"},{"authorName":"樊建人","id":"45bae7e8-ed30-4ec8-9ae4-d5c23825eeb4","originalAuthorName":"樊建人"},{"authorName":"岑可法","id":"28f7d0cf-2440-4e9c-bb2f-06df8d9805d4","originalAuthorName":"岑可法"}],"doi":"","fpage":"883","id":"dca1463e-dea5-4090-a72a-b6c9d5413fff","issue":"5","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"03b00ca8-118d-4a74-b654-4131380ffd7e","keyword":"液雾燃烧","originalKeyword":"液雾燃烧"},{"id":"10259808-d5bf-4e3e-887f-fc9b5bc755e3","keyword":"直接数值模拟","originalKeyword":"直接数值模拟"},{"id":"13cbbd85-14bf-4d38-a17c-dc0210796b49","keyword":"旋流射流","originalKeyword":"旋流射流"},{"id":"132d4a22-d552-4ffb-8c9e-7b40150f28db","keyword":"非预混燃烧","originalKeyword":"非预混燃烧"},{"id":"edeef35a-c4c8-4827-8ce4-8526e62c5e68","keyword":"预混燃烧","originalKeyword":"预混燃烧"}],"language":"zh","publisherId":"gcrwlxb201105041","title":"不同工况下旋流液雾燃烧的直接数值模拟","volume":"32","year":"2011"},{"abstractinfo":"与喷到水中的水喷流(潜喷流submerged jet)不同,喷到大气中水的喷流(自由喷流free jet)从喷嘴喷出后会发生缩流,然后再渐渐扩散,但这种缩流的流动机理迄今都没有被非常清楚的描述.本文对喷管喷出的射流进行了详细的非定常粘性流动解析,究明了产生缩流时准自由射流区域内压能转化为动能的机理,并用数值计算方法对自由射流的缩流直径进行了预测.","authors":[{"authorName":"韩凤琴","id":"e3a8c0e2-9049-462c-b7e6-7b8ba7e18cea","originalAuthorName":"韩凤琴"},{"authorName":"肖业祥","id":"b9c6282f-89d2-4a27-b58d-e1fce73491fe","originalAuthorName":"肖业祥"},{"authorName":"久保田乔","id":"1b52a369-9740-4363-b80b-a4c83c707c16","originalAuthorName":"久保田乔"},{"authorName":"刘洁","id":"04a1f11b-2d4e-4eb6-a57b-7590ca5f2c00","originalAuthorName":"刘洁"}],"doi":"","fpage":"421","id":"53ac7071-997c-44bb-aadb-6cf27e5a18a9","issue":"3","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"39c681b1-cc4c-4214-918a-d842a953e66a","keyword":"自由射流","originalKeyword":"自由射流"},{"id":"9d482f4b-a664-4b82-b64c-145cde92b5a7","keyword":"多相流","originalKeyword":"多相流"},{"id":"67e93f9c-d1a5-4c74-a1a9-d581ec756257","keyword":"数值解析CFD","originalKeyword":"数值解析CFD"},{"id":"cdaade80-121d-49c6-8516-082c10793249","keyword":"缩流机理","originalKeyword":"缩流机理"},{"id":"6c0935a9-e36e-4250-8713-7f0cf45eb9cb","keyword":"能量损失","originalKeyword":"能量损失"}],"language":"zh","publisherId":"gcrwlxb200403018","title":"自由射流缩流机理研究","volume":"25","year":"2004"},{"abstractinfo":"本文对旋流扩散燃烧进行了数值模拟,研究旋流数对热NO生成的影响,其中对湍流采用Reynolds应力方程模型,对燃烧采用EBU-Arrhenius模型,对热NO生成采用设定PDF的模型.预报了不同旋流数下轴向和切向的平均和脉动速度、温度和NO浓度,指出随着旋流数的增大,计算得到的出口平均NO浓度首先升高然后下降.这一趋势和本文作者最近的实验结果的趋势一致.随着旋流数的增大,湍流脉动首先下降然后升高,而进口附近的温度上升,二者综合效果造成上述趋势.因此在实际燃烧器中,完全靠改变旋流数来控制NO生成是不现实的.应该采取其他方法来降低NO的生成.","authors":[{"authorName":"陈兴隆","id":"11f1df74-9a9b-4459-b113-acc9a56fb152","originalAuthorName":"陈兴隆"},{"authorName":"周力行","id":"62b3369d-98f0-4459-899c-e291950200c4","originalAuthorName":"周力行"},{"authorName":"张健","id":"32f4c387-6dde-4c4d-9113-b859c8e80c65","originalAuthorName":"张健"}],"doi":"","fpage":"511","id":"54be4e97-082b-4281-a6fd-d2ec38b9b5d9","issue":"4","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"0297a098-bd8b-4812-bc37-2c2a3df0e464","keyword":"旋流燃烧","originalKeyword":"旋流燃烧"},{"id":"2bc92058-677e-4862-bb13-3cc58f6339d9","keyword":"NO生成","originalKeyword":"NO生成"},{"id":"aebb0a53-b185-4eed-9a9b-c955a58ce08c","keyword":"概率密度模拟","originalKeyword":"概率密度模拟"}],"language":"zh","publisherId":"gcrwlxb200104033","title":"旋流扩散燃烧中旋流数对热NO生成的影响","volume":"22","year":"2001"},{"abstractinfo":"本文在计算模型采用分块非结构化六面体网格的基础上,利用雷诺平均N-S方程,标准k-ε紊流模型,结合SIMPLEC算法,数值模拟了旋流泵的内部流动,得到了旋流泵压力面、吸力面上的压力分布,同时也估算了叶轮的效率,比较了旋流泵试验性能与数值模拟性能,有助于了解旋流泵的内部流动特性,指导旋流泵的水力设计.","authors":[{"authorName":"夏朋辉","id":"1927f58a-116a-4dbb-991c-22ab12a9fe1f","originalAuthorName":"夏朋辉"},{"authorName":"刘树红","id":"4720c28a-c05e-4836-a847-ca4b181e9dd2","originalAuthorName":"刘树红"},{"authorName":"吴玉林","id":"f27ebfc2-cfb6-4562-868b-db6dfc873972","originalAuthorName":"吴玉林"}],"doi":"","fpage":"420","id":"9cfa2849-ed35-453e-8f7c-d8a682980889","issue":"3","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"2e4deb3e-357b-4b93-9a8b-656eb981f720","keyword":"旋流泵","originalKeyword":"旋流泵"},{"id":"cc47d1ca-a6d7-406d-9179-932b8dea03d8","keyword":"数值模拟","originalKeyword":"数值模拟"},{"id":"4e74e8ed-a411-4846-ac92-5733709e752c","keyword":"分块非结构化六面体网格","originalKeyword":"分块非结构化六面体网格"}],"language":"zh","publisherId":"gcrwlxb200603019","title":"旋流泵全流道三维定常流场的数值模拟","volume":"27","year":"2006"},{"abstractinfo":"使用RKE模型和RSM模型对某旋流燃烧器进行3D冷态湍流流动模拟计算,并从精度、计算量和收敛性3个方面对两个模型进行了比较。通过与PIV所测得的出口冷态流场对比表明,两个模型均可以较准确地预测燃烧器出口的宏观流场、径向速度和轴向速度分布。相比较而言,RSM模型在预报流场速度峰值的位置、回流区的大小、主流射流宽度等方面比RKE模型更准确一些,在收敛性上RSM模型也占优,而在计算量上,RSM模型略大一些,但对反应流计算,两个模型计算量基本一致。研究表明在模拟旋流燃烧器流场时RSM模型具有一定的优越性,建议优先考虑。","authors":[{"authorName":"崔凯","id":"99d68e83-6e5d-4a49-8592-db610141c1b1","originalAuthorName":"崔凯"},{"authorName":"张海","id":"f41c1ba3-2022-4923-b91b-b2a24a615140","originalAuthorName":"张海"},{"authorName":"王卫良","id":"026cec10-06fa-43f0-bbe0-b13cedd941cb","originalAuthorName":"王卫良"},{"authorName":"吴玉新","id":"75790f8e-f7dc-406d-8c3c-36a3a0296595","originalAuthorName":"吴玉新"},{"authorName":"杨海瑞","id":"dabe4bc0-aff3-48cf-ab71-30d0646d1656","originalAuthorName":"杨海瑞"},{"authorName":"吕俊复","id":"40afa71a-4aa9-415b-851c-0cda2e49af9f","originalAuthorName":"吕俊复"}],"doi":"","fpage":"2006","id":"f3ed45c5-96fd-4da4-adea-af2a1b073ca7","issue":"11","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"e34f7890-3e8c-4726-ba51-a0568a9cd9cf","keyword":"旋流燃烧器","originalKeyword":"旋流燃烧器"},{"id":"89ac4d50-bfa2-423f-9f98-30c89cfd9e94","keyword":"湍流","originalKeyword":"湍流"},{"id":"13812b58-d673-4950-8227-1155b50bd37e","keyword":"Realizable","originalKeyword":"Realizable"},{"id":"26ae8278-2058-4256-b81d-eea7ddfdca85","keyword":"κ-ε模型","originalKeyword":"κ-ε模型"},{"id":"79a613e7-a727-4b2f-aa70-a0ceae008427","keyword":"RSM模型","originalKeyword":"RSM模型"},{"id":"f0d0c410-5069-4dbb-986c-9c8603c18105","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"gcrwlxb201211043","title":"旋流燃烧器数值模拟中Realizableκ-ε和RSM模型的比较","volume":"33","year":"2012"},{"abstractinfo":"以谦比希铜冶炼厂ISA熔炼炉为原型,通过水模拟和时下应用广泛的数值模拟方法对ISA炉顶吹熔炼过程进行了初步研究.以喷枪为研究中心,探讨了喷枪中是否加入旋流片对熔池流场以及熔炼过程中喷溅量的影响.结果表明:喷枪加入旋流片后有利于气流沿径向分布,形成鼓状气泡,气流对液相的冲击深度会减小,从而减轻对渣锍界面的干扰,有利于渣、锍分离,此外还能够明显减小炉内的渣的喷溅量;不过喷枪加入旋流片后,对液相区域的搅拌能力会减弱.","authors":[{"authorName":"殷攀","id":"4e29f473-d647-45d3-95ab-50b0546f40a3","originalAuthorName":"殷攀"},{"authorName":"赵洪亮","id":"86d70689-ee7a-4617-9d2b-253a4233899e","originalAuthorName":"赵洪亮"},{"authorName":"张立峰","id":"384b8f72-ca27-42b6-9e98-5f8063d1a861","originalAuthorName":"张立峰"},{"authorName":"王 森","id":"324b605e-f64a-49f3-8ad5-e6ee69757115","originalAuthorName":"王 森"},{"authorName":"张建坤","id":"ec9df059-a551-4291-8705-8a39b3c27f73","originalAuthorName":"张建坤"},{"authorName":"范巍","id":"90e47bdd-525a-410f-b1ed-66675c0466cb","originalAuthorName":"范巍"}],"doi":"10.14186/j.cnki.1671-6620.2017.02.005","fpage":"104","id":"766236af-10ab-4e2a-a9ff-c759fa08d114","issue":"2","journal":{"abbrevTitle":"CLYYJXB","coverImgSrc":"journal/img/cover/CLYYJXB.jpg","id":"17","issnPpub":"1671-6620","publisherId":"CLYYJXB","title":"材料与冶金学报"},"keywords":[{"id":"73f30278-7c85-4347-9b99-15bc1c18066a","keyword":"ISA熔炼","originalKeyword":"ISA熔炼"},{"id":"68191e9e-ea46-46f9-86a6-aa8d9c92941f","keyword":"旋流片","originalKeyword":"旋流片"},{"id":"f104ddc1-59a4-4974-b1b1-eeb4e6dc33a7","keyword":"水模型","originalKeyword":"水模型"},{"id":"cf74b857-9f66-48d0-9e8b-a982857098ad","keyword":"流场","originalKeyword":"流场"},{"id":"3d423529-7e46-4b36-a08d-15cba3679b34","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"clyyjxb201702005","title":"艾萨旋流顶吹熔炼过程数值模拟","volume":"16","year":"2017"},{"abstractinfo":"本文对实验室级小型超细粉射流分级机中的流场分布进行了测量与理论分析,并通过数学回归,推导出了分级室中流场的速度分布方程.","authors":[{"authorName":"郑少华","id":"71f9d095-1e57-4bc6-84a0-ca178a21aea7","originalAuthorName":"郑少华"},{"authorName":"陶珍东","id":"259d3eaf-00d6-4d8b-af70-f286996c6def","originalAuthorName":"陶珍东"},{"authorName":"刘福田","id":"66d3c7cb-16c5-444b-b070-ce98120b4cb5","originalAuthorName":"刘福田"},{"authorName":"吕红星","id":"2e973dd9-c7f2-40a7-8e83-f765c25d08b1","originalAuthorName":"吕红星"}],"doi":"10.3969/j.issn.1001-1625.2000.03.008","fpage":"28","id":"fecb48b2-308c-4ca5-8be0-7e4cd61a47fc","issue":"3","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"47c330c7-5e47-4172-ae6c-e233d948d560","keyword":"分级","originalKeyword":"分级"},{"id":"b1a4cac9-6ce8-41dd-8f2b-a44de8e1ef5a","keyword":"数学回归","originalKeyword":"数学回归"},{"id":"3e1a4dfd-427d-4f22-b265-db6691dcdabd","keyword":"流场","originalKeyword":"流场"}],"language":"zh","publisherId":"gsytb200003008","title":"超细粉射流分级机流场分析","volume":"19","year":"2000"},{"abstractinfo":"本文应用流体相湍流脉动速度大小和方向均具有随机性的颗粒相随机轨道模型,对有直流一次风和旋流二次风的旋流燃烧室内的颗粒运动进行了数值模拟.得到的颗粒相轴向总质量流通量、轴向与切向速度分布与实验测量数据相符合,并比Gosman颗粒随机轨道模型的模拟结果有一定的改进.","authors":[{"authorName":"尚庆","id":"4ae0a65a-af21-4b8a-834b-d5f22662b7ad","originalAuthorName":"尚庆"},{"authorName":"张健","id":"abfb9226-df82-48a3-90a2-24a6f22a09cb","originalAuthorName":"张健"},{"authorName":"周力行","id":"b5a59cf6-d360-4d38-a53d-4cfe6e0ce1e9","originalAuthorName":"周力行"}],"doi":"","fpage":"515","id":"e7dfd207-9ddb-41b9-9736-0e20289a7bf3","issue":"3","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"f543af39-a005-4ecb-9a9d-4b7d9df52979","keyword":"旋流燃烧室","originalKeyword":"旋流燃烧室"},{"id":"6531ddb3-47b4-4c3d-bc91-12c77620ff00","keyword":"数值模拟","originalKeyword":"数值模拟"},{"id":"d8e1c864-a846-4984-b5ee-787f1916bd59","keyword":"颗粒运动","originalKeyword":"颗粒运动"},{"id":"420a779d-71b5-418e-8b2b-dc363449394a","keyword":"颗粒随机轨道模型","originalKeyword":"颗粒随机轨道模型"}],"language":"zh","publisherId":"gcrwlxb200403048","title":"旋流燃烧室内颗粒运动的数值模拟","volume":"25","year":"2004"},{"abstractinfo":"水下气体喷射产生一个复杂的非稳态多相流场.为建立两相流场结构的预测方法,并揭示水下气体射流初期的流动演化和气水的相互作用,采用VOF两相流模型对水下气体喷射过程进行了数值模拟,分析了气体喷射形成的复杂流场结构.结果显示,在喷射初期,喷射形成的部分气泡在逆向涡流带动下向后翻卷;管口附近产生压力峰值区,该峰值快速衰减趋近于周围环境压力;射流过程中气液两相流场内形成了复杂的压缩和膨胀波以及涡旋运动.","authors":[{"authorName":"王乐勤","id":"0adedf64-2859-47ee-9c34-1c769608e282","originalAuthorName":"王乐勤"},{"authorName":"郝宗睿","id":"5db1d9e5-2abb-413b-9860-608f820852f8","originalAuthorName":"郝宗睿"},{"authorName":"吴大转","id":"f782f3dc-9b63-4aea-a02c-12dd904d477b","originalAuthorName":"吴大转"}],"doi":"","fpage":"1132","id":"b7767213-4d5e-4199-b69d-c9da0bd9b518","issue":"7","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"8f6d3dac-2c13-4ce7-b049-1d82f221a00f","keyword":"气体射流","originalKeyword":"气体射流"},{"id":"a8f288ab-c0b6-4ac7-a71b-da6f16c8f741","keyword":"VOF模型","originalKeyword":"VOF模型"},{"id":"82a4c6fc-0f5b-4b32-89e3-6466ef0cf4ed","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"gcrwlxb200907014","title":"水下气体射流初期流场的数值研究","volume":"30","year":"2009"}],"totalpage":615,"totalrecord":6145}