欢迎登录材料期刊网

材料期刊网

高级检索

对首钢高炉渣样及相应配制的四组元渣的固相析出温度和黏度进行了对比研究,通过电子探针和旋转法分别检测渣样的固相析出温度和黏度。结果表明,现场高炉渣固相析出温度为1400~1440℃,相应配制的四组元渣的固相析出温度要比现场高炉渣高40~50℃。其中微量组元如 S(CaS形式),FeO,MnO和TiO2等的存在有利于降低渣固相析出温度。黏度测试表明,现场高炉渣在1500℃时的黏度范围为0.3~0.4 Pa·s,相应配制的四组元渣在1500℃时的黏度比现场渣要高30%左右。通过以上对比,不仅了解了高炉渣中微量组元对高炉渣的整体影响,而且有助于将实验室研究结果应用于现场操作。

The liquidus temperatures and viscosities of the industrial blast furnace slags from Shougang and the corresponding synthetic slags have been measured.Liquidus temperatures of these slags have been determined by high temperature equilibration,quenching and Electron Probe X-ray Microanalysis (EPMA)technique.The viscosities of these slags have been measured using the custom designed rotating bob apparatus which enables control of the gas atmosphere and rapid quenching of the samples after completion of the experiment. The microstructures and phase compositions of the quenched slag samples after the viscosity measurements were determined by EPMA.It was found that the liquidus temperatures of the industrial BF slags are in the range of 1 400 to 1 440℃.The liquidus temperatures of the synthetic slags are 40~50℃ higher than those of the corresponding industrial slags.Presence of minor components such as sulphur,TiO2 ,MnO and FeO in the slag all results in decrease of the liquidus temperature.The viscosities of the industrial BF slags are in the range of 0.3 to 0.4 Pa·s at 1 500℃.The viscosities of the synthetic slags are 30% higher than those of the corresponding industri-al slags at 1 500℃.The differences of liquidus temperature and viscosity between industrial slags and synthetic slags will be useful indications to apply the results of the synthetic slags to promoting the operation of the blast furnace.

参考文献

[1] 王筱留.钢铁冶金学[M].北京:冶金工业出版社,1991
[2] Muan A;Osborne E F.Phase Equilibria Among Oxides in Steelmaking[M].Boston:Addison-Wesley Pub Co,1965
[3] 蒋大军,林千谷,何木光,甘勤,付卫国.MgO对烧结矿与高炉渣冶炼性能及工艺参数影响的试验[J].中国冶金,2010(01):35-41.
[4] 周渝生,钱晖,张友平,李肇毅,范建峰.现有主要炼铁工艺的优缺点和研发方向[J].钢铁,2009(02):1-10.
[5] 徐小辉,项钟庸,邹忠平,罗云文.高炉下部区域气液平衡实证研究[J].钢铁,2011(08):17-21.
[6] 谢洪恩.攀钢高炉炉渣性能分析[J].中国冶金,2011(11):22-25.
[7] Osborn E F;Devries R C;Gee K H.Optimum Compo-sition of Blast Furnace Slag as Deduced From Liquidus Data for the Quaternary System CaO-MgO-Al2 O3-SiO2[J].Jour-nal Metals,1954(06):33.
[8] Baldwin B G .The Liquidus and High-Temperature Properties of Blast-Furnace Slags[J].Journal of Iron and Steel,1957,186(04):388.
[9] Giedroyc V;Mitchell J G.Controlling the Sulphur Content of I-ron[J].Journal of the Iron and Steel Institute,1964(01):11.
[10] 张淑会,穆红旺,孙艳芹,吕庆.高铝中钛高炉渣脱硫的动力学机制[J].钢铁,2012(08):13-16.
[11] Zhao B;Jak E;Hayes P C.Fundamental Studies in Ironmak-ing Slags to Lower Operating Temperatures and to Recover Titania From Slag[A].上海,2009:1176.
[12] Zhao B;Jak E;Hayes P C.Phase Equilibria Studies in the Slag System‘TiO2 ’-CaO-MgO-Al2 O3-SiO2 at Carbon Satura-tion[A].Santiago,Chile,2009:71.
[13] Zhao B;Jak E;Hayes P C.High Temperature Viscosity Measurements for Slags at Controlled Oxygen Potential[A].Santiago,Chile,2009:183.
[14] Bale C W;Chartrand P;Decterov S A.FactSage[J].Ecole Polytechnique Montréal,2012
[15] 郁庆瑶,张龙来,林成城.高炉炉渣流动性的实验研究[J].宝钢技术,2002(03):37-40.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%