欢迎登录材料期刊网

材料期刊网

高级检索

以6063铝合金薄壁梁结构为研究对象,采用准静态轴向加载的方式,借助WAW-E600型微控万能试验机,探明诱导孔结构对铝合金薄壁梁压缩变形行为与吸能性能的影响规律。研究表明:单排诱导孔能够使试样的变形模式由欧拉模式转变为混合模式,提高试样变形的稳定性,降低载荷峰值,吸能性能增加26.78%。多排诱导孔的位置与尺寸对薄壁梁的变形有较大影响,试样中部的诱导孔会降低结构稳定性,使试样失稳以欧拉模式变形为主,其载荷水平及吸能性能均较低;尺寸呈梯度变化的诱导孔能够使试样发生手风琴模式的变形,试样顺序压溃,载荷波动平稳,吸能性能较高;大尺寸诱导孔会使试样在局部发生剪切变形并逐层顺序压溃,其载荷平稳,是一种新的变形模式。通过实验数据对比,系统研究诱导孔尺寸对临界载荷的影响规律,并基于线形回归理论,建立铝合金薄壁梁结构临界载荷与截面惯性矩之间的定量关系。

The effect of cut-outs on deformation behaviors and energy absorption of 6063 aluminum with thin-walled structures will be investigated by quasi-static axial compression using WAW-E600 microcomputer controlled universal testing machine. The results show that the deformation mode of the aluminum extrusions is changed from Euler mode to Mixed mode after setting single line cut-outs on the specimen, and the energy absorption increases 26.78%. The deformation behavior is more stable and the peak force is lower than that of the complete sample during compression. The size and position of cutouts have very significant effects on axial collapse behaviors of aluminum thin-walled structure. The aluminum samples buckle under Euler mode with poor performance of deformation stability, loading force and energy absorption, because cut-outs locate in the middle of extrusions. Gradually changing size of cut-outs could leads that the compression behaviors become concertina mode. The aluminum extrusions collapse from top to bottom sequentially with steady load curve and excellent energy absorbing performance. Large cut-outs will introduce local buckling with shear deformation. The compression behavior is a new mode, which has stable load and successive collapse process. Based on the experimental data, the influence of cut-outs size on the critical force was studied. The relationship between critical force and inertia of the thin-walled structure was established by using linear regression.

参考文献

[1] 王鹏翔;徐立伟;张亮;高勇丽;吴沈荣.薄壁直梁件碰撞诱导变形模拟分析[J].汽车工程,2008(11):990-992.
[2] 吴晓杰;胡宏勋;刘学军;崔振山.薄壁梁轴向压溃力的影响参数[J].机械设计与研究,2012(1):42-45.
[3] 武和全;胡宏伟;辛勇.薄壁梁诱导槽结构抗撞性优化设计及应用[J].公路交通科技,2011(1):120-126.
[4] XIE Su-chao;ZHOU Hui;ZHAO Jun-jie;ZHANG Yi-cheng.Energy-absorption forecast of thin-walled structure by GA-BP hybrid algorithm[J].中南大学学报(英文版),2013(04):1122-1128.
[5] Xiong Zhang;Gengdong Cheng.A comparative study of energy absorption characteristics of foam-filled and multi-cell square columns[J].International journal of impact engineering,200711(11):1739-1752.
[6] Sahu SK.;Datta PK..Dynamic stability of curved panels with cutouts[J].Journal of Sound and Vibration,20024(4):683-696.
[7] Buckling of tension-loaded thin-walled composite plates with cut-outs[J].Composites science and technology,20081(1):p.90.
[8] Sungha lee;Changsu Hahn;Meungho Rhee.Effect of triggering on the energy absorption capacity of axially compressed aluminum tubes[J].Materials & Design,19991(1):31-40.
[9] Kil-Sung LEE;Hyeon-Kyeong SEO;Yong-June YANG;Woo-Chae HWANG;Kwang-Hee IM;In-Young YANG.Collapse behavior evaluation of hybrid thin-walled member by stacking condition[J].中国有色金属学报(英文版),2011(z1):135-140.
[10] 向东;傅定发;娄燕;王冠;李灿;李落星.Al-Mg-Si多胞截面型材准静态轴向压缩[J].中国有色金属学报,2012(7):1843-1854.
[11] B Arnold;W Altenhof.Experimental observations on the crush characteristics of AA6061 T4 and T6 structural square tubes with and without circular discontinuities[J].International journal of crashworthiness,20041(1):73-87.
[12] Ghazijahani, Tohid Ghanbari;Jiao, Hui;Holloway, Damien.Structural behavior of shells with different cutouts under compression: An experimental study[J].Journal of Constructional Steel Research,2015Feb.(Feb.):129-137.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%