欢迎登录材料期刊网

材料期刊网

高级检索

研究了(Na0.8K0.2)0.5Bi0.5TiO3陶瓷的介电和压电性能,发现陶瓷从室温到500℃温度范围的介电谱中存在两个介电峰,电滞回线显示第一个介电峰由铁电-反铁电相变引起的,温度继续升高,反铁电相由宏畴变为微畴,微畴向顺电相转变导致了第二个介电峰,该峰对应的相变为弥散型相变。室温下陶瓷具有较高的剩余极化强度Pr=29.4μC/cm2和相对低的矫顽电场Ec=2.8kV/mm,极化后的陶瓷显示出较高的压电常数d33=120pC/N和机电耦合系数Kp28.5%,以及高的频率常数Nφ=2916Hz·m,120℃具有最小的谐振频率温度系数。

Dielectric and piezoelectric properties of (Na0.8K0.2)0.5Bi0.5TiO3 ceramics were
investigated. The results show that ferroelectric-antiferroelectric and antiferroelectric-paraelectric phase transition with relaxor characteristic
occur from room temperature to 500℃, leading to the two peaks of electric permittivity to temperature. At room temperature, it has relative
high remanent polarization Pr=29.4μC/cm2 and low conceive field Ec=2.8kV/mm. The polarized ceramics have good piezoelectric
properties such as piezoelectric constant d33=120pC/N, electromechanical coupling factor Kp=28.5%, frequency constant Nφ=2916Hz·m,
as well as minimum resonance frequency temperature coefficient at 120℃.

参考文献

[1] Smlenskii G A, Isupv V A, Afranovskaya A I, et al. Sov. Phys. Solid St, 1961, 2 (11): 2651--2654.
[2] Takanaka T, Maruyama K I. Jap. J. Appl. Phys., 1991, 30 (9B): 2236--2239.
[3] Park S E, Hong K S. J. Mater. Res., 1997, 12 (8): 2152--2157.
[4] Sasaki A, Chiba T, Mamiya Y, et al. Jap. J. Appl. Phys., 1999, 38: 5564--5567.
[5] Chu Baojin, Chen Daren, Li Guorrong, et al. J. Euro. Ceram. Soc., 2002, 22: 2115--2121.
[6] Said S, Mercurio J P. J. Euro. Ceram. Soc., 2002, 21: 1333--1336.
[7] 王天宝, 王列娥, 卢永康, 等(Wang Tian-Bao et al). 硅酸盐学报(Journal of the Chinese Ceramic Society), 1986, 14 (1): 14--22.
[8] Jaffe B, Cook W R, Jaffe H. Piezoelectric Ceramics(Academic Press, London and New York), 1971.
[9] Sakatak K, Takenaka T, Naitou Y. Ferroelectrics, 1992, 131: 219--226.
[10] Siny I G, Husson E, Beny J M, et al. Physics B, 2001, 293: 382.
[11] Kreisel J, Glazer A M, Bouvier P, et al. Physical Review B, 2001, 63: 1--10.
[12] Yao X, Chen Z L, Cross L E. J. Appl. Phys., 1983, 54: 3399--3403.
[13] 江向平, 方健文, 曾华荣, 等. 物理学报, 2000, 49: 802--806.
[14] Dai X, Digiovanni A, Viehland D. J. Appl. Phys., 1993, 74: 3399--3405.
[15] Chu F, Setter N, Kagantsev A K. J. Appl. Phys., 1993, 74: 5129--5134.
[16] Elkechai O, Manier M, Mercurio J P. Phys. Stat. Sol. (a), 1996, 157: 499--506.
[17] Newnham R E. Amer. Ceram. Soc. Bull., 1974, 53: 53--58.
[18] Lucata P G, Constantiescu F L, Barb D. J. Am. Ceram. Soc., 1985, 68: 533--539.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%