通过第一性原理计算方法计算了三元固溶体fce-Nb1-xSixN的总能,在此基础上计算了其分离能和调幅分解线.结果表明,fcc-Nb1-xSixN是亚稳相,能经调幅分解机制分解为fcc-NbN和fcc-SiN.组元相形成的应变能小于分离能,不会抑制fcc-Nb1-xSixN的共格调幅分解.fcc-Nb1-xSixN的Si含量为渗透阈值时不会发生调幅分解.fcc-SiN可能较快转变为β-Si3N4,从而抑制fcc-Nb1-xSixN的共格调幅分解.
参考文献
[1] | Veprek S;Reiprich S .A concept for the design of novel superhard coatings[J].Thin Solid Filma,1996,268:64. |
[2] | Veprek S;Haussmann M;Reiprich S et al.Novel thermodynamically stable and oxidation resistant superhard coating materials[J].Surface and Coatings Technology,1996,86-87:394. |
[3] | Veprek S;Niederhofer A;Moto K et al.Composition,nanostructure and origin of the ultrahardness in nc-TiN/a-Si3 N4/a-and nc-TiSi2 nanocomposites with Hv = 80 to 》105 GPa[J].Surface and Coatings Technology,2000,133-134:152. |
[4] | Han ZH.;Hu XP.;Tian JW.;Li GY.;Gu MY. .Magnetron sputtered NbN thin films and mechanical properties[J].Surface & Coatings Technology,2004(2/3):188-192. |
[5] | Song Z X et al.The effect of N2 partial pressure on the properties of Nb-Si-N films by RF reactive magnetron sputtering[J].Surface and Coatings Technology,2007,201:2897. |
[6] | Sandu CS;Benkahoul M;Sanjines R;Levy F .Model for the evolution of Nb-Si-N thin films as a function of Si content relating the nanostructure to electrical and mechanical properties[J].Surface & Coatings Technology,2006(6):2897-2903. |
[7] | Dong YS;Liu Y;Dai JW;Li GY .Superhard Nb-Si-N composite films synthesized by reactive magnetron sputtering[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2006(14):5215-5219. |
[8] | Zhang RF;Veprek S .Phase stabilities of self-organized nc-TiN/a-Si3N4 nanocomposites and of Ti1-xSxNy solid solutions studied by ab initio calculation and thermodynamic modeling[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,2008(8):2264-2275. |
[9] | Zhang RF;Veprek S .On the spinodal nature of the phase segregation and formation of stable nanostructure in the Ti-Si-N system[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2006(1-2):128-137. |
[10] | R.F. Zhang;S.H. Sheng;S. Veprek .Stability of Ti-B-N solid solutions and the formation of nc-TiN/a-BN nanocomposites studied by combined ab initio and thermodynamic calculations[J].Acta Materialia,2008(16):4440-4449. |
[11] | Veprek S;Veprek-Heijman MGJ .The formation and role of interfaces in superhard nc-MenN/a-Si3N4 nanocomposites[J].Surface & Coatings Technology,2007(13):6064-6070. |
[12] | Alling B;Ruban AV;Karimi A;Peil OE;Simak SI;Hultman L;Abrikosov IA .Mixing and decomposition thermodynamics of c-Ti1-xAlxN from first-principles calculations[J].Physical review, B. Condensed matter and materials physics,2007(4):5123-1-5123-13-0. |
[13] | Mayrhofer PH;Fischer FD;Bohm HJ;Mitterer C;Schneider M .Energetic balance and kinetics for the decomposition of supersaturated Ti1-xAlxN[J].Acta materialia,2007(4):1441-1446. |
[14] | Mayrhofer P H;Music D;Schneider J M .Ab initio calculated binodal and spinodal of cubic Ti1-xAlxN[J].Applied Physics Letters,2006,88:071922. |
[15] | Zhang RF;Veprek S .Phase stabilities and spinodal decomposition in the Cr1-xAlxN system studied by ab initio LDA and thermodynamic modeling: Comparison with the Ti1-xAlxN and TiN/Si3N4 systems[J].Acta materialia,2007(14):4615-4624. |
[16] | Alling B;Marten T;Abrikosov IA;Karimi A .Comparison of thermodynamic properties of cubic Cr1-xAlxN and Ti1-xAlxN from first-principles calculations[J].Journal of Applied Physics,2007(4):44314-1-44314-8-0. |
[17] | Sheng S H;Zhang R F;Veprek S .Phase stabilities and thermal decomposition in the Zr1-xAlxN system studied by ab initio calculation and thermodynamic modeling[J].Acta Materialia,2008,56:968. |
[18] | Niederhofer A;Bolom T;Nesladek P et al.The role of percolation threshold for the control of the hardness and thermal stability of super and ultrahard nanocomposites[J].Surface and Coatings Technology,2001,146-147:183. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%