欢迎登录材料期刊网

材料期刊网

高级检索

针对在重力梯度张量正演中计算耗时过长和核矩阵内存消耗过大等制约反演实施的瓶颈问题,在L1范数的基础上,引入种植反演,用累加求和分析替换迭代求解,避免计算或存储反演核矩阵,以减少内存占用和加快反演迭代;针对种植反演容易导致相邻异常源相互侵入的问题,引入一个基于位场水平衰减特性加权函数来限制密度吸引子的作用范围,以期使密度吸引子忽略较远的异常源,抑制相邻异常源相互干扰.反演结果及分析表明重力及重力梯度张量种植反演所需计算机内存小和水平衰减特性加权函数能有效的抑制相邻异常源的侵入.

Large-scale inversion of gravity gradient tensor data is a time-consuming problem with high demands on computational and physical memory usage. To avoid extraordinary matrix-vector multiplications in each inverse iteration and to speed up the forward of geophysical models, planting inversion is introduced and conjugate gradient iteration replaced by accumulation summary based on L1 norm. The planting inversion easily leads to adjacent anomalies mutually invasive, a horizontal weighted function is proposed to suppress mutual interference between the adjacent anomaly sources. These results of the inversions and analysis results show that planting inversion with horizontal weighted function obtain a meaningful geophysical model. And these methods require little memory and high efficiency.

参考文献

上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%