通过悬浮熔炼的方法制备了half-Heusler热电材料Zr(Hf)NiSn(Sb)合金, 并进一步通过快速凝固来细化晶粒, 通过放电等离子烧结制备块材并测试其热电性能. X射线衍射分析表明获得了单相Half-Heusler化合物. 扫描电子显微观察发现, 快速凝固后的样品晶粒尺寸在500nm左右, 放电等离子烧结后晶粒尺寸并未明显长大. 同时观察到在晶粒的表面还分布了很多几十纳米尺寸的小晶粒. 快速凝固的样品与熔炼样品相比具有较高的电导率及载流子浓度, 据此推断在快速凝固过程中产生的纳米晶粒应为金属相. 快速凝固后的样品晶界散射增多, 因而具有较低的晶格热导率.
Thermoelectric materials Zr(Hf)NiSn(Sb) alloys were prepared by levitation melting followed by melt- spinning to refine the microstructure, and then consolidated by spark plasma sintering for the property measurements. XRD analysis showed that the half-Heusler phases were obtained. The microstructures of the melt spun thin ribbons were studied by the scanning electron microscope and transmission electron microscope. The thin ribbons were in the size of a few hundreds nanometers which didn’t grow too much during the sintering process. Nanocrystals were found in the crystal grains. The carrier concentration increased for the melt-spinning samples compared with the levitation melting samples, indicating that the nanocrystals were metallic. The increasing boundary scattering after melt-spinning made the lattice thermal conductivity decrease.
参考文献
[1] | Uher C, Yang J, Hu S, et al. Transport properties of pure and doped MNiSn (M=Zr, Hf). Phys. Rev. B, 1999, 59(13): 8615-8621.[2]Aliev F G, Kozyrkov V V, Moshchalkov V V, et al. Narrow band in the intermetallic compounds MNiSn (M = Ti, Zr, Hf). Z. Phys. B,90, 80(3): 353-357.[3] Hohl H, Ramirez A P, Goldmann C, et al. Efficient dopants for ZrNiSn-based thermoelectric materials. J. Phys. Condens. Matter., 1999, 11(7): 1697-1709.[4] Bhattacharya S, Tritt M T, Xia Y, et al. Grain structure effects on the lattice thermal conductivity of Ti-based half-Heusler alloys. Appl. Phys. Lett., 2002, 81: 43-45.[5] Bhattacharya S, Skove M J, Russell M, et al. Effect of boundary scattering on the thermal conductivity of TiNiSn-based half-Heusler alloys. Phys. Rev. B, 2008, 77(18): 184203-1-8.[6] Sharp J W, Poon S J, Goldsmid H J. Boundary scattering and the thermoelectric figure of merit. Phys. Stat. Sol. (a), 2001, 187(2): 507-516.[7]刘海强, 唐新峰, 王 焜, 等(LIU Hai-Qiang, et al). Ti1-x(Hf0.919Zr0.081)xNiSn的制备及热电性能. 物理学报(Acta Physica Sinica), 2006, 55(4): 2003-2007.[8]Hasaka M, Morimura T, Sato H, et al. Thermoelectric properties of Tix(HfyZr1-y)1-xNiSn0.998Sb0.002 half-Heusler ribbons. J. Electron. Mater., 2009, 38(7): 1320-1325.[9]Morimurat T, Hasaka M, Yoshida S, et al. Microstructures and thermoelectric properties of an annealed Ti0.5(Hf0.5Zr0.5)0.5NiSn0.998Sb0.002 ribbon. J. Electron. Mater., 2009, 38(7): 1154-1158.[10]Yu C, Zhu T J, Xiao K, et al. Reduced grain size and improved thermoelectric properties of melt spun (Hf, Zr)NiSn half-Heusler alloys. J. Electron. Mater., 2009, DOI: 10.1007/s11664-009-1032-8.[11] Yu C, Zhu T J, Shi R Z, et al. High-performance half-Heusler thermoelectric materials Hf1-xZrxNiSn1-ySby prepared by levitation melting and spark plasma sintering. Acta Materialia, 2009, 57(9): 2757-2764.[12]Nolas G S, Sharp J W, Goldsmid H J. Thermoelectrics: Basic Principles and New Materials Developments. Heidelberg, Germany: Springer, 2001: 76-83. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%