欢迎登录材料期刊网

材料期刊网

高级检索

通过光学显微镜(OM)、透射电镜(TEM)观察及硬度、拉伸性能测试,研究了抗硫钻杆钢中析出相的析出行为。结果表明:抗硫钻杆钢中析出相的形貌及结构尺寸具有多重特征,表现出对回火温度的依赖性。580℃回火温度下,铁素体基体上析出微米量级的棒状及纳米量级的球形析出相,抗硫钻杆钢强度因而较高。回火温度升高到625℃,析出相形貌逐渐向球形演变,并且其体积分数增加,抗硫钻杆钢强度、塑性同时提高,强度达到150 ksi钢级,表现出良好的强度/韧性匹配。回火温度680℃下,析出相沿晶界析出并逐渐聚集,导致抗硫钻杆钢强度急剧降低。抗硫钻杆钢的强/韧性匹配依赖于析出相—位错交互作用和析出相—基体变形协调两种机制的相互竞争。

Precipitates and mechanical properties of an anti-sulfur drill pipe steel tempered at different temperatures were investigated by means of optical microscopy(OM),transmission electron microscopy(TEM),hardness and tensile tests.The results show that rod-shaped precipitates with micron size and spherical-shaped precipitates with nanometer size are observed in the matrix of ferrite for the steel tempered at 580 ℃.As tempering temperature increases to 625 ℃,the volume fraction of precipitate increases remarkably,and its shape is evolved into sphere gradually.Consequently,strength and toughness of the steel improves simultaneously,with the tensile strength higher than 1000 MPa.With increasing tempering temperature to 680 ℃,precipitation occurrs and segregates along grain boundary,which results in degradation in strength.Finally,the competitive mechanism between precipitate-dislocation interaction and harmonizing precipitate-matrix deformation,which is responsible for optimial match between strength and ductility,is discussed.

参考文献

[1] 李鹤林,韩礼红,张文利.高性能油井管的需求与发展[J].钢管,2009(01):1-9.
[2] Hill M;Kawasaki E P;Kronbach G E.Oil well casing-evidence of the sensitivity to rapid failure in an H2S environment[J].Materials Protection&Performance,1972(11):19-22.
[3] Asahi H;Sogo Y;Ueno M et al.Metallurgical factors controlling SSC resistance of high strength low alloy steel[J].Corrosion,1989,45:519-524.
[4] Funakawa Y;Shiozaki T;Tomita K;Yamamoto T;Maeda E .Development of high strength hot-rolled sheet steel consisting of ferrite and nanometer-sized carbides[J].ISIJ International,2004(11):1945-1951.
[5] Kim B C;Lee S;Kim N J et al.In situ fracture observations on tempered martensite embrittlement in an AISI 4340 steel[J].Metallurgical andMaterials Transaction A,1991,22:1889-1892.
[6] S. Lee;S. Kim;B. Hwang;B. S. Lee;C. G. Lee .Effect of carbide distribution on the fracture toughness in the transition temperature region of an SA 508 steel[J].Acta materialia,2002(19):4755-4762.
[7] Grobner P J;Sponseller D L;Diesburg D E .Effect of molybdenum content on the sulfide stress cracking resistance of AISI 4130-type steel with0.035%Cb[J].Corrosion,1978,40:1-21.
[8] Ravi T;Ramaswamy V;Namboodhiri T K G .Effect of molybdenum on the resistance to H2S of high sulphur microalloyed steels[J].Materials Scienceand Engineering A,1993,169:111-118.
[9] Yoshino Y;Minozaki Y .Sulfide stress cracking resistance of low-alloy nickel steels[J].Corrosion,1986,42:222-232.
[10] 张国君,刘刚,丁向东,孙军,陈康华.含有不同尺度量级第二相的高强铝合金拉伸延性模型[J].中国有色金属学报,2002(z1):1-10.
[11] Liu G;Sun J;Nan CW;Chen KH .Experiment and multiscale modeling of the coupled influence of constituents and precipitates on the ductile fracture of heat-treatable aluminum alloys[J].Acta materialia,2005(12):3459-3468.
[12] S.P. Yuan;G. Liu;R.H. Wang .Effect of precipitate morphology evolution on the strength-toughness relationship in Al-Mg-Si alloys[J].Scripta materialia,2009(12):1109-1112.
[13] C.-S. Tsao;C.-Y. Chen;U.-S. Jeng .Precipitation kinetics and transformation of metastable phases in Al-Mg-Si alloys[J].Acta materialia,2006(17):4621-4631.
[14] QIANG LIU;CHANG-ZHENG CHEN;JIAN-ZHONG GUI .Effect of Copper Content on Mechanical Properties and Fracture Behaviors of Al-Li-Cu Alloy[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,2005(6):1389-1394.
[15] K. S. KUMAR;S. A. BROWN;J. R. PICKENS .MICROSTRUCTURAL EVOLUTION DURING AGING OF AN Al-Cu-Li-Ag-Mg-Zr ALLOY[J].Acta materialia,1996(5):1899-1915.
[16] Courtney T.Mechanical Behavior of Materials[M].New York:McGraw-Hill,1990
[17] Zhu AW.;Starke EA.;Csontos A. .Computer experiment on superposition of strengthening effects of different particles[J].Acta materialia,1999(6):1713-1721.
[18] Hahn G T;Rosenfield A R.Metallurgical factors affecting fracture toughness of aluminum alloys[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1975(06):653-668.
[19] S.P. Yuan;G. Liu;R.H. Wang .Effect of precipitate morphology evolution on the strength-toughness relationship in Al-Mg-Si alloys[J].Scripta materialia,2009(12):1109-1112.
[20] Yuan S P;Liu G;Wang R H et al.Coupling effect of multiple precipitates on the ductile fracture of aged Al-Mg-Si alloys[J].Scripta Materialia,2007,57:865-868.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%