欢迎登录材料期刊网

材料期刊网

高级检索

推导了一种适用于梯度复合材料断裂特性分析的梯度扩展单元,采用细观力学方法描述材料变化的物理属性,通过线性插值位移场给出了4节点梯度扩展元随空间位置变化的刚度矩阵,并建立了结构的连续梯度有限元模型.通过将梯度单元的计算结果与均匀单元以及已有文献结果进行对比,证明了梯度扩展有限元(XFEM)的优越性,并进一步讨论了材料参数对裂纹尖端应力强度因子(SIF)的影响规律.研究结果表明:随着网格密度的增加,梯度单元的计算结果能够迅速收敛于准确解,均匀单元的计算误差不会随着网格细化而消失,且随着裂纹长度和属性梯度的增大而增大;属性梯度和涂层基体厚度比的增大导致涂覆型梯度材料的SIF增大;裂纹长度的增加和连接层基体厚度比的减小均导致连接型梯度材料的SIF增大.

参考文献

[1] Lee Y D,Erdogan F.Residual stresses in FGM and laminated thermal barrier coatings[J].International Journal of Fracture,1994-1995,69(2):145-165.
[2] Jin Z H,Feng Y Z.Thermal fracture resistance of a functionally graded coating with periodic edge cracks[J].Surface and Coatings Technology,2008,202 (17):4189-4197.
[3] Delale F,Erdogan F.The crack problem for a nonhomogeneous plane[J].Journal of Applied Mechanics,1983,50(3):609-614.
[4] Konda N,Erdogan F.The mixed mode crack problem in a nonhomogeneous elastic medium[J].Engineering Fracture Mechanics,1994,47(4):533-545.
[5] 果立成,吴林志,杜善义.含任意方向裂纹功能梯度材料的应力分析研究[J].复合材料学报,2004,21(1):84-89.Guo Licheng,Wu Linzhi,Du Shanyi.Stress analysis of functionally graded materials with an arbitrarily oriented crack[J].Acta Materiae Compositae Sinica,2004,21(1):84-89.
[6] 黄干云,汪越胜,余寿文.功能梯度材料的平面断裂力学分析[J].力学学报,2005,37(1):1-8.Huang Ganyun,Wang Yuesheng,Yu Shouwen.A new multi layered model for in-plane fracture analysis of functionally graded materials[J].Acta Mechanica Sinica,2005,37(1):1-8.
[7] Erdogan F.The crack problem for bonded nonhomogeneous materials under antiplane shear loading[J].Journal of Applied Mechanics,1985,52(4):823-828.
[8] 李春雨,邹振祝,段祝平.正交各向异性功能梯度材料反平面裂纹尖端应力场[J].固体力学学报,2001,22(1):81-84.Li Chunyu,Zou Zhenzhu,Duan Zhuping.Stress field around the antiplane crack tip in an orthotropic functionally graded material[J].Acta Mechanica Solida Sinica,2001,22(1):81-84.
[9] 张幸红,李亚辉,韩杰才,等.TiC-Ni系功能梯度材料的断裂力学有限元分析[J].复合材料学报,2001,18(4):87-92.Zhang Xinghong,Li Yahui,Han Jiecai,et al.Cracking problem analysis of TiC-Ni FGM using finite element method[J].Acta Materiae Compositae Sinica,2001,18(4):87-92.
[10] Anlas G,Santare M H,Lambros J.Numerical calculation of stress intensity factors in functionally graded materials[J].International Journal of Fracture,2000,104(2):131-143.
[11] Kim J-H,Paulino G H.Finite element evaluation of mixed mode stress intensity factors in functionally graded materials[J].International Journal for Numerical Methods in Engineering,2002,53(8):1903-1985.
[12] Kim J-H,Paulino G H.An accurate scheme for mixed-mode fracturc analysis of functionally graded materials using the interaction integral and micromechanics models[J].International Journal for Numerical Methods in Engineering,2003,58(10):1457-1497.
[13] Kim J-H,Paulino G H.The interaction integral for fracture of orthotropic functionally graded materials:Evaluation of stress intensity factors[J].International Journal of Solids and Structures,2003,40(15):3967-4001.
[14] Ayhan A O.Three-dimensional mixed-mode stress intensity factors for cracks in functionally graded materials using enriched finite elements[J].International Journal of Solids and Structures,2009,46(3/4):796-810.
[15] Dolbow J E,Gosz M.On the computation of mixed-mode stress intensity factors in functionally graded materials[J].International Journal of Solids and Structures,2002,39 (9):2557-2574.
[16] Kim J-H,Paulino G H.Isoparametric graded finite elements for nonhomogeneous isotropic and orthotropic materials[J].Journal of Applied Mechanics,2002,69(4):502-514.
[17] Mo(e)s N,Dolbow J,Belytschko T.A finite element method for crack growth without remeshing[J].International Journal for Numerical Methods in Engineering,1999,46(1):131-150.
[18] Sukumar N,Prevost J-H.Modeling quasi-static crack growth with the extended finite element method:Part Ⅰ-Computer implementation[J].International Journal of Solids and Structures,2003,40(26):7513-7537.
[19] 李录贤,王铁军.扩展有限元法(XFEM)及其应用[J].力学进展,2005,35(1):5-20.Li Luxian,Wang Tiejun.The extended finite element method and its applications-A review[J].Advances in Mechanics,2005,35(1):5-20.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%