欢迎登录材料期刊网

材料期刊网

高级检索

为摸清内蒙古达里诺尔湖湖泊水体与入湖河水的水化学主要离子组成特征及其控制因素,于2013年6—9月对湖水、河水进行采样.采用水化学类型三角图分析不同湖水与河水的主要离子组成,利用Gibbs图分析水体化学成分主要驱动因素,在此基础上,运用河水主要离子比例关系图进一步分析入湖河水离子主要来源.结果显示,达里诺尔湖湖水总溶解固体(TDS)含量范围为5800—6170 mg·L-1,平均值为5990 mg·L-1,入湖河水TDS含量范围为140—310 mg·L-1,平均值为200 mg·L-1,远低于湖水的TDS值.入湖的河水属于淡水,而湖水则已演变为中度咸水.湖水、河水主离子组成以及水化学类型具有一定的差异,其中,湖水离子含量特征为HCO-3(2564.60 mg·L-1)>Cl-(2025.29 mg·L-1)>SO2-4(424.02 mg·L-1),Na+(2070.68 mg·L-1)>K+(159.24 mg·L-1)>Mg2+(20.04 mg·L-1)>Ca2+(5.09 mg·L-1);河水离子含量特征为HCO-3(118.93 mg·L-1)>Cl-(24.99 mg·L-1)>SO2-4(11.77 mg·L-1),Na+(49.84 mg·L-1)>Ca2+(27.83 mg·L-1)>Mg2+(14.55 mg·L-1)>K+(6.56 mg·L-1);依据阴、阳离子所占比例进行分类,湖水的水化学类型为 Cl-HCO3-Na 型,贡格尔河为Cl?HCO3?SO4?Na?Ca型,浩来河为Cl?HCO3?Na?Ca?Mg型,沙里河为HCO3?Na?Mg型,亮子河为HCO3?Ca?Na型.从水化学驱动因素上看,其水化学组成自然起源主要受自身蒸发?结晶作用的影响,部分区域受到农业活动、放牧及旅游业等人类活动影响,而贡格尔河、浩来河、亮子河及沙里河4条入湖河水的水化学组成落在Gibbs模型的中部,则主要受岩石风化作用控制,4条河流主要受碳酸岩风化影响,钠硅酸岩风化对河水中阳离子的贡献也较大.结合入湖河水水质、水化学驱动因素分析,近年来湖水水体盐化主要是受湖区蒸发量增大、入湖流量减少、湖区面积萎缩的影响,入湖盐分的贡献及人类活动的影响则相对较小.

To study the main water chemical characteristics and control factors for Dalinuoer Lake and inflow rivers in Inner Mongolia, the lake and river water samples were collected from June to September 2013. Piper diagram was used to analyze the composition of main ions for the lake and each river, and the major driving factors for water chemistry were investigated by Gibbs map. Further more, primary sources of the ions in the flow rivers were analyzed with the ions ratio diagram. The results show that the content of total dissolved solid ( TDS ) in Dalinuoer Lake was in the range of 5800—6170 mg·L-1 and the average value was 5990 mg·L-1;The TDS content of inflow rivers was in the range of 140—310 mg·L-1 , and the average value was 200 mg·L-1 far less than the lake. The major ion compositions of the water in the lake and Inflow Rivers were significantly different. The ion contents of the lake were HCO3- ( 2564. 60 mg · L-1 ) > Cl- ( 2025. 29 mg · L-1 ) > SO2-4 (424.02 mg·L-1), Na+(2070.68 mg·L-1)>K+(159.24 mg·L-1)>Mg2+(20.04 mg·L-1)>Ca2+(5.09 mg·L-1). And the contents in the river were HCO3-(118.93 mg·L-1)>Cl-(24.99 mg·L-1)>SO2-4 (11.77 mg·L-1), Na+(49.84 mg·L-1)>Ca2+(27.83 mg·L-1)>Mg2+(4.55 mg·L-1)>K+( 6.56 mg·L-1 ) . According to the proportion of all ions, the hydrochemical classification was Cl?HCO3?Na for the lake, Cl?HCO3?SO4?Na?Ca for Gong Geer River, Cl?HCO3?Na?Ca?Mg for Hao Lai River, HCO3?Na?Mg for Sha Li River, HCO3?Ca?Na for Liang Zi River, respectively. Based on the driving factors of the water chemistry, the natural factor was evaporation ?crystallization,and in some areas of the lake it was affected by human activities. However, the inflow river ( Gong Geer, Hao Lai, Liang Zi and Sha Li) water samples located in the middle of Gibbs model, which indicates that the major chemical process of inflow rivers water is controlled by rock weathering. Carbonate weathering plays a much more important role.Combined with the analysis of the river water chemical composition and driving factors, recent increase in lake water salinity is mainly due to increased evaporation, decreased flow into the lake, and shrinking lake area. The influence of river salts and the contribution of human activities were relatively small.

参考文献

[1] 吴敬禄;马龙.新疆干旱区湖泊演化及其气候水文特征[J].海洋地质与第四纪地质,2011(2):135-143.
[2] Biao Sun;Changyou Li;Claudia M.D.S. Cordovil;Keli Jia;Sheng Zhang;Amarilis de Varennes;Luis S. Pereira.VARIABILITY OF WATER QUALITY IN WULIANGSUHAI LAKE RECEIVING DRAINAGE WATER FROM HETAO IRRIGATION SYSTEM IN YELLOW RIVER BASIN, CHINA[J].Fresenius environmental bulletin: FEB,20136(6):1666-1676.
[3] 刁晓君;席北斗;何连生;邓祥征;吴锋;王鹏腾.基于生态分区的我国湖泊营养盐控制目标研究[J].环境科学,2013(5):1687-1694.
[4] 白洁;陈曦;李均力;杨辽.1975-2007年中亚干旱区内陆湖泊面积变化遥感分析[J].湖泊科学,2011(1):80-88.
[5] 盛东;李俊峰;孙飞飞;何新林;杨广.干旱区内陆湖泊水盐变化及调控机理[J].干旱区研究,2010(4):529-535.
[6] 王亚俊;李宇安;王彦国;谭芜.20世纪50年代以来博斯腾湖水盐变化及趋势[J].干旱区研究,2005(3):355-360.
[7] 赵景峰;秦大河;长岛秀树;雷加强;魏文寿.博斯腾湖的咸化机理及湖水矿化度稳定性分析[J].水科学进展,2007(4):475-482.
[8] 周云凯;姜加虎;黄群;孙占东.内蒙古岱海水质咸化过程分析[J].干旱区资源与环境,2008(12):51-55.
[9] 曾海鳌;吴敬禄.蒙新高原湖泊水质状况及变化特征[J].湖泊科学,2010(6):882-887.
[10] 胡春华;周文斌;夏思奇.鄱阳湖流域水化学主离子特征及其来源分析[J].环境化学,2011(9):1620-1626.
[11] 郭军明;康世昌;张强弓;黄杰;王康.青藏高原纳木错湖水主要化学离子的时空变化特征[J].环境科学,2012(7):2295-2302.
[12] 王鹏;尚英男;沈立成;伍坤宇;肖琼.青藏高原淡水湖泊水化学组成特征及其演化[J].环境科学,2013(3):874-881.
[13] 王君波;朱立平;鞠建廷;汪勇.西藏纳木错东部湖水及入湖河流水化学特征初步研究[J].地理科学,2009(2):288-293.
[14] 翟大兴;杨忠芳;柳青青;夏学齐;侯青叶;余涛;袁国礼;冯海艳.鄱阳湖流域水化学特征及影响因素分析[J].地学前缘,2012(1):264-276.
[15] 甄志磊;李畅游;李文宝;胡其图;刘晓旭;刘志娇;于瑞雪.内蒙古达里诺尔湖流域地表水和地下水环境同位素特征及补给关系[J].湖泊科学,2014(6):916-922.
[16] 甄志磊;张生;史小红;孙标.基于遥感技术的达里诺尔湖湖面演化研究[J].中国农村水利水电,2013(7):6-9.
[17] 张生;李畅游;梁喜珍;史小红.基于模糊综合评价法的内蒙古达里诺尔湖水环境质量评价[J].中国工程科学,2010(6):28-31.
[18] 孙瑞;张雪芹;吴艳红.藏南羊卓雍错流域水化学主离子特征及其控制因素[J].湖泊科学,2012(4):600-608.
[19] 曾海鳌;吴敬禄.塔吉克斯坦水体同位素和水化学特征及成因[J].水科学进展,2013(2):272-279.
[20] 鞠建廷;朱立平;汪勇;谢曼平;彭平;甄晓林;王君波.藏南普莫雍错流域水体离子组成与空间分布及其环境意义[J].湖泊科学,2008(5):591-599.
[21] 侯昭华;徐海;安芷生.青海湖流域水化学主离子特征及控制因素初探[J].地球与环境,2009(1):11-19.
[22] 朱秉启;杨小平.塔克拉玛干沙漠天然水体的化学特征及其成因[J].科学通报,2007(13):1561-1566.
[23] Chen JS.;Wang FY.;Xia XH.;Zhang LT..Major element chemistry of the Changjiang (Yangtze River)[J].Chemical geology,20023-4(3-4):231-255.
[24] 秦建华;冉敬;杜谷.青藏高原东部长江流域盆地陆地化学风化研究[J].沉积与特提斯地质,2007(4):1-6.
[25] 韩贵琳;刘丛强.贵州乌江水系的水文地球化学研究[J].中国岩溶,2000(1):35-43.
[26] 汪敬忠;吴敬禄;曾海鳌;马龙.内蒙古主要湖泊水资源及其变化分析[J].干旱区研究,2015(1):7-14.
[27] 叶宏萌;袁旭音;葛敏霞;李继洲;孙慧.太湖北部流域水化学特征及其控制因素[J].生态环境学报,2010(1):23-27.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%