欢迎登录材料期刊网

材料期刊网

高级检索

以热水解后高含固污泥及其脱水后固、液分离产物为对象进行厌氧消化试验,通过生物化学甲烷势(BMP)及脱水性能测定,研究其产气量、有机物分布、污泥脱水性能及生物质能转化特性,评估高含固污泥热水解-脱水-脱水液厌氧消化工艺的可行性.结果表明,经热水解预处理的高含固污泥进行厌氧消化后,其毛细吸收时间(CST)及脱水泥饼含水率由247.5±0.9 s和71.1%±1.3%上升至568.0±1.6 s和80.7%±1.0%,即厌氧消化会导致热水解后污泥脱水性能下降.污泥中74.0%的有机物在水热预处理之后被转移至液相,是厌氧消化所产沼气的主要来源.物质能量衡算结果表明,高含固污泥采用热水解-脱水-脱水液厌氧消化工艺可以有效地将消化装置容积大大减少;沼气燃烧所产能量实现该工艺能量自给自足.

To evaluate the feasibility of high-solid sludge thermal hydrolysis pretreatmentdewatering-anaerobic digestion (THP-DW-AD) process,the biomass conversion characteristics of thermal hydrolysis pretreated high-solid sludge was investigated by biochemical methane potential (BMP) test,dewatering performance test and analysis of organic matter distribution and gas production in solid and liquid phase.The results showed that anaerobic digestion process had negative effects on the dewatering ability of pretreated sludge,in that its Capillary Suction Time (CST) value and moisture content of sludge cakes increased from 247.5±0.9 s to 568.0±1.6 s and 71.1%± 1.3 % to 80.7% ± 1.0%,respectively.About 74.0% of organic matter converted to biogas in AD process,was transferred to liquid phase after thermal hydrolysis pretreatment.Digester's volume in THP-DW-AD process can be much less than that in AD process.The advantage of THP-AD-DW process is that the energy input needed can be satisfied from the excess energy production of the process itself,resulting in an energetically self-sufficient process.

参考文献

[1] Lise Appels;Jan Baeyens;Jan Degreve;Raf Dewil.Principles And Potential Of The Anaerobic Digestion Of Waste-activated Sludge[J].Progress in energy and combustion science,20086(6):755-781.
[2] Yingjun Zhou;Masaki Takaoka;Wei Wang.Effect of thermal hydrolysis pre-treatment on anaerobic digestion of municipal biowaste: A pilot scale study in China[J].Journal of Bioscience and Bioengineering,20131(1):101-105.
[3] 孙晓.高含固率污泥厌氧消化系统的启动方案与试验[J].净水技术,2012(03):78-82.
[4] 王治军;王伟.热水解预处理改善污泥的厌氧消化性能[J].环境科学,2005(1):68-71.
[5] 卓杨;韩芸;程瑶;彭党聪;李玉友.高含固污泥水热预处理中碳、氮、磷、硫转化规律[J].环境科学,2015(3):1006-1012.
[6] 马俊伟;曹芮;周刚;乔玮;王伟.浓度对高固体污泥热水解特性及流动性的影响[J].环境科学,2010(7):1583-1589.
[7] E. Neyens;J. Baeyens.A review of thermal sludge pre-treatment processes to improve dewaterability[J].Journal of hazardous materials,20031/3(1/3):51-67.
[8] Qiao W;Wang W;Xun R;Lu WJ;Yin KQ.Sewage sludge hydrothermal treatment by microwave irradiation combined with alkali addition[J].Journal of Materials Science,20087(7):2431-2436.
[9] 稂时光;张健;王双飞;郑欢;何奕明;周永信.剩余污泥热水解厌氧消化中试研究[J].环境工程学报,2015(1):431-435.
[10] Miklas Scholz.Review of Recent Trends in Capillary Suction Time (CST) Dewaterability Testing Research[J].Industrial & Engineering Chemistry Research,200522(22):8157-8163.
[11] 裴海燕;胡文容;李晶;陈磊.活性污泥与消化污泥的脱水特性及粒径分布[J].环境科学,2007(10):2236-2242.
[12] 唐霞;肖先念;李碧清;崔静.高温热水解预处理技术用于污泥减量化及资源化的应用[J].净水技术,2015(3):93-95.
[13] 符成龙 .机械脱水污泥热水解预处理及深度脱水的试验研究[D].浙江大学,2013.
[14] 贾传兴;彭绪亚;刘国涛.有机垃圾两相厌氧消化氨氮累积模型的建立及验证[J].重庆大学学报,2011(1):121-127.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%