用分光光度法和离子色谱法,研究了A/A/O工艺焦化废水处理厂的进出水质和活性污泥对硫氰化物( SCN-)的降解机制.研究结果表明,SCN-主要在A/A/O工艺的好氧单元中降解去除;在常温( 25 ℃)下活性污泥对SCN-降解的动力学过程符合米氏方程,Vmax为11.15 mg SCN-·(g-1 MLSS)·h-1,Km为44.96 mg·L-1;15 ℃低温显著降低SCN-的降解速率;在15 ℃下,92.62 mg·L-1 SCN-能在24 h内完全降解,其中的N和S元素相应地生成了NH3、NO-2 和S2-等中间代谢产物,并最终转化为产物NO-3 和SO2-4 ;N和S元素的转化率分别为94.32%和99.08%,基本符合物料守恒定律,说明SCN-中N和S元素在好氧池中可以彻底降解转化NO-3 和SO2-4 .这些结果对于了解好氧池的功能和提高焦化废水中的SCN-去除率具有重要意义.
The influent and effluent qualities of A/A/O in coking wastewater biological treatment system and degradation mechanism of thiocyanate ( SCN-) by aerobic sludge were studied using the spectrophotometry and ion chromatography. The results showed that SCN-was mainly removed in the aerobic unit of A/A/O process. The degradation kinetics of SCN-in the activated sludge followed the Michaelis-Menten equation at room temperature ( 25 ℃) , and the kinetic parameters Vm ax and Km were 11.15 mg SCN-·( g-1 MLSS)·h-1 and 44.96 mg·L-1 , respectively. The degradation rate of SCN-was reduced significantly at 15 ℃. SCN- of 92.62 mg·L-1 was degraded completely within 24 h at 15 ℃. Intermediate products of NH3-N, NO-2 and S2- were produced with SCN- degradation, and were ultimately transformed to NO-3 and SO2-4 , respectively. The transformation rates of N and S element were 94.32% and 99.08%, respectively, which were in line with the law of mass balance, indicating N and S elements of SCN-could be completely transformed to NO-3 and SO2-4 in the aerobic tank. These results provide useful information for understanding the function of aerobic tank and improving removal of SCN- in coking wastewater.
参考文献
[1] | 潘霞霞;李媛媛;黄会静;任源;韦朝海.焦化废水中硫氰化物的生物降解及其与苯酚、氨氮的交互影响[J].化工学报,2009(12):3089-3096. |
[2] | 任源;韦朝海;吴超飞;吴锦华;谭展机.生物流化床A/O2工艺处理焦化废水过程中有机组分的GC/MS分析[J].环境科学学报,2006(11):1785-1791. |
[3] | 蒙小俊;张玉秀;杜海迪;张璇.DiaphorobacterP2菌株酚降解特性及其在焦化废水中的除酚作用[J].环境化学,2014(5):789-793. |
[4] | 易欣怡;韦朝海;吴超飞;吴海珍.O/H/O生物工艺中焦化废水含氮化合物的识别与转化[J].环境科学学报,2014(9):2190-2198. |
[5] | Wood AP.;McDonald IR.;Jordan SL.;Morgan TD.;Khan S. Murrell JC.;Borodina E.;Kelly DP..A novel pink-pigmented facultative methylotroph, Methylobacterium thiocyanatum sp. nov., capable of growth on thiocyanate or cyanate as sole nitrogen sources[J].Archives of microbiology,19982(2):148-158. |
[6] | Sorokin DY;Tourova TP;Lysenko AM;Kuenen JG.Microbial thiocyanate utilization under highly alkaline conditions[J].Applied and Environmental Microbiology,20012(2):528-538. |
[7] | Stephen Ebbs.Biological degradation of cyanide compounds[J].Current Opinion in Biotechnology,20043(3):231-236. |
[8] | Ogawa, T.;Noguchi, K.;Saito, M.;Nagahata, Y.;Kato, H.;Ohtaki, A.;Nakayama, H.;Dohmae, N.;Matsushita, Y.;Odaka, M.;Yohda, M.;Nyunoya, H.;Katayama, Y..Carbonyl sulfide hydrolase from thiobacillus thioparus strain thi115 is one of the β-carbonic anhydrase family enzymes[J].Journal of the American Chemical Society,201310(10):3818-3825. |
[9] | 陆洪宇;孙亚全;董春娟;耿炤宇.焦化废水中COD、挥发酚和硫氰化物同步高效去除[J].环境工程学报,2014(7):2848-2852. |
[10] | Banerjee G..PHENOL- AND THIOCYANATE-BASED WASTEWATER TREATMENT IN RBC REACTOR[J].Journal of Environmental Engineering,199610(10):941-948. |
[11] | Young Mo Kim;Donghee Park;Dae Sung Lee;Jong Moon Park.Inhibitory effects of toxic compounds on nitrification process for cokes wastewater treatment[J].Journal of hazardous materials,20083(3):915-921. |
[12] | 刘建军;李建芬;周汉芬.分光光度法检测废水中的硫氰酸根含量[J].武汉工业学院学报,2009(4):60-62. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%