本文将聚乙烯醇( PVA)分别与添加剂碳酸钙( CaCO3)、活性炭( AC)、二氧化硅( SiO2)以及海藻酸钠(SA)掺杂,并对大肠杆菌(E. coli)进行包埋,形成4种PVA包埋细菌复合胶体颗粒.同时,采用以铁氰化钾为探针的电化学方法监测被包埋菌体的活性变化,进而对各复合颗粒中的添加剂含量进行择优筛选.在最优条件下,研究各复合颗粒的储藏时间和方式对菌体的活性影响及各种包埋材料的机械稳定性.将筛选出的最优活性下各包埋细菌复合胶体颗粒应用于3,5二氯苯酚(DCP)的毒性检测,其对DCP的灵敏度排序依次为SA>AC>CaCO3>SiO2.因此,以PVA?SA固定微生物的复合胶体颗粒与PVA固定微生物胶体颗粒分别应用于1—5 mg·L-1的乙嘧酚水样的毒性检测,得其抑制率范围分别为6.38%—21.44%和3.21%—16.98%.由此表明,加入添加剂后的PVA固定法对毒物毒性的灵敏度有显著提高,在固定化微生物水质毒性检测领域具有一定的实际应用价值.
In this paper, polyvinyl alcohol (PVA) was doped with calcium carbonate (CaCO3), activated carbon (AC), silica (SiO2) and sodium alginate (SA), respectively. And then these entrapped PVAs were used to embed Escherichia coli ( E. coli) and produce four type of entrapped PVA?bacteria agents. Potassium ferricyanide was used as a probe to monitor the changes of bacterial activities, and the optimum contents of additives were selected based on the results of the above activity tests. Thus the effects of storage, mechanical stability of various composites on the bacterial activities were further studied under the optimum contents of additives. Based on the optimum conditions, embedded bacteria in all 4 types of composites were employed to detect the toxicity of 3, 5 dichlorophenol ( DCP ) . The experimental results showed that the sensitivity of embedded bacteria in different composites to DCP was SA >AC >CaCO3>SiO2 . Therefore, the embedded bacteria in PVA?SA composite and PVA were used seperatiely to detect the toxicities of ethirimol water samples in 1—5 mg·L-1.The obtained ranges of inhibition rate were 6.38%—21.44% for PVA?SA composite embedding bacteria and 3.21%—16.98% for PVA embedding bacteria. These results indicated that the doped additives effectively improved the sensitivity of PVA immobilizing method and provided an alternative for the technique of bacterial immobilization in the field of toxicity test.
参考文献
[1] | Zhu Y D;Yang Y Y;Liu M X et al.Concentration,distribution,Source,and risk assessment of PAHs and heavy metals in surface water from the threegorges reservoir,China[J].HUMAN AND ECOLOGICAL RISK ASSESSMENT,2015,1(6):1593-1607. |
[2] | Yang X F;Duan J M;Wang L et al.Heavy metal pollution and health risk assessment in the Wei River in China[J].Environmental Monitoring and Assessment,2015,187(3):1-11. |
[3] | Lu Y L;Song S;Wang R S et al.Impacts of soil and water pollution on food safety and health risks in China[J].Environment International,2015,77:5-15. |
[4] | Gaur N;Flora G;Yadav M et al.A review with recent advancements on bioremediation-based abolition of heavy metals[J].Environmental Science:Processes& Impacts,2014,16:180-193. |
[5] | 谢欣.突发性水污染事件应急监测的探讨[J].科技与创新,2015(03):117-118. |
[6] | Qian J;Li J M;Fang D Y et al.A disposable biofilm-modified amperometric biosensor for the sensitive determination of pesticide biotoxicity in water[J].RSC Advances,2014,4:55473-55482. |
[7] | 俞卫忠,陈建.生物传感器及其在环境监测中的应用[J].污染防治技术,2014(02):66-68,72. |
[8] | 冯冲.微生物传感器研究进展及在环境监测中的应用[J].资源节约与环保,2015(01):52-52. |
[9] | 王晓辉,赵丽霞,姜丹.污染物毒性检测的微生物传感器研究进展[J].河北工业科技,2009(03):200-204. |
[10] | Chang Liu;Ting Sun;Xiaolong Xu .Direct toxicity assessment of toxic chemicals with electrochemical method[J].Analytica chimica acta,2009(1/2):59-63. |
[11] | Sudipta Pramanik;Eakalak Khan .Effects of cell entrapment on growth rate and metabolic activity of pure cultures commonly found in biological wastewater treatment[J].Biochemical Engineering Journal,2009(3):286-293. |
[12] | Martins S C S;Martins C M;Santaella S T .Immobilization of microbial cells:A promising tool for treatment of toxic pollutants in industrial wastewater[J].Afr J Biotechnol,2013,12(28):4412-4418. |
[13] | 王杏佳,徐丽,高静,刘国际.PVA固定化微生物凝胶小球的制备及性能研究[J].塑料工业,2014(02):89-92,54. |
[14] | 金军,刘希.固定化微生物法处理活性染料印染废水的研究[J].安徽农业科学,2015(06):236-237. |
[15] | Takei T;Zkeda K;Ijima H et al.A comparison of sodium sulfate,sodium phosphate,and boric acid for preparation of immobilized Pseudomonas putidaF1 in poly(vinyl alcohol) beads[J].Polymer Bulletin,2012,69(3):363-373. |
[16] | Takei T;Zkeda K;Ijima H et al.Fabrication of poly(vinyl alcohol) hydrogel beads crosslinked using sodium sulfate for microorganism immobilization[J].Process Biochemistry,2011,46(2):566-571. |
[17] | Kao W C;Wu J Y;Chang C C et al.Cadmium biosorption by polyvinyl alcohol immobilized recombinant Escherichia coli[J].Journal of Hazardous Materials,2009,169(1-3):651-658. |
[18] | 胡俊 .固定化微球菌降解废水中邻苯二甲酸酯的研究[D].北京:中国地质大学,2014. |
[19] | Bai X;Ye Z F;Li Y F et al.Preparation of crosslinked macroporous PVA foam carrier for immobilization of microorganisms[J].Process Biochemistry,2010,45(1):60-66. |
[20] | 茆云汉,王建龙.聚乙烯醇固定化微生物新方法的研究[J].环境科学学报,2013(02):370-376. |
[21] | Bai, X.;Ye, Z.;Li, Y.;Ma, Y. .Macroporous poly(vinyl alcohol) foam crosslinked with epichlorohydrin for microorganism immobilization[J].Journal of Applied Polymer Science,2010(5):2732-2739. |
[22] | 孙丽慧,沈爱萍,何宝龙,郑裕国.海藻酸钠-聚乙烯醇-活性炭共固定化重组大肠杆菌细胞[J].中国食品学报,2015(02):21-27. |
[23] | 李洪昌,王春红,李锡伯,张桂燕,徐磊.海藻酸钙/聚乙烯醇复合医用敷料的制备和性能[J].上海纺织科技,2014(12):14-17. |
[24] | 邹孔标,王伟,卢文庆,聂素云.PVA控制合成球形碳酸钙[J].南京师范大学学报(工程技术版),2008(01):64-68. |
[25] | Zain N A M;Suhaimi M S;Idris A et al.Development and modification of PVA-alginate as a suitable immobilization matrix[J].Process Biochemistry,2011,46(11):2122-2129. |
[26] | Wu S J;Li F T;Xu R et al.Preparation of poly (vinyl alcohol)/silica composite nanofibers membrane functionalized with mercapto groups by electrospinning[J].Materials Letters,2010,64(11):1295-1298. |
[27] | 胡章文,李瑞菲,卓甲明.纳米CaCO3/PVA复合材料的制备与表征[J].矿冶工程,2008(03):102-105,109. |
[28] | 张雅旎,王京刚,陈良杰,朱会.活性污泥的固定化及其性能研究[J].化工环保,2007(02):125-128. |
[29] | 刘畅 .基于铁氰化钾的微生物传感技术的研究[D].东北大学,2009. |
[30] | 徐筑君,徐颖超,常晓杰,刘畅.以表面处理大肠杆菌为模型的电化学微生物传感器在毒性检测领域的应用?[J].环境化学,2015(05):897-903. |
[31] | 冒爱琴,王华,谈玲华,蔺相阳,潘仁明.活性炭表面官能团表征进展[J].应用化工,2011(07):1266-1270. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%