欢迎登录材料期刊网

材料期刊网

高级检索

通过对内蒙古达里诺尔湖冰封期湖冰与湖水进行取样,分析总磷(TP)、总溶解性固体(TDS)、Mg2+、Ca2+、K+、Na+、Cl-、SO2-4、CO2-3和HCO-3离子在冰体及水体中的分布特征及迁移过程.结果表明,在冰体和水体阳离子中,Ca2+、Mg2+相对贫乏,在冰体中平均浓度分别为1.37 mg·L-1和7.0 mg·L-1,水体中平均浓度分别为4.01 mg·L-1和24.53 mg·L-1, Na+所占比例最高,冰体与水体中平均浓度均达到92%.CO32-、HCO-3和Cl-是冰体和水体中阴离子的主要组成部分,冰体中平均浓度分别为435.86、543.20、539.97 mg·L-1,水体中平均浓度分别为1773.90、2556.49、1890.08 mg·L-1.Piper图表明达里诺尔湖水化学类型以Na+?CO2-3?Cl-?HCO-3型为主. Gibbs图显示岩石风化与蒸发浓缩作用对达里诺尔湖的离子含量影响显著.通过对TP、TDS、Mg2+、Ca2+和Cl-之间的关系分析可知,在水体中,Mg2+和Ca2+的组成随着深度的变化基本保持不变,而在冰体中呈现无规律的变化,在水中表现为基本不变;TP和Cl-在水体中没有相关性,在冰中相关性不明显.无论在水体中还是在冰体中,TP和TDS具有较好的相关性(水体:r=0.94;冰体:r=0.90),说明TDS可以在冰封期较好地示踪TP的迁移过程.

Dali Lake as the research object in this present work is sampled in water and ice during the icebound season. Total phosphorus (TP) ,total dissolved solids (TDS) and major ions(Mg2+, Ca2+,K+, Na+, Cl-, SO4 2-, CO2-3 and HCO-3 ) were measured and analyzed. The results showed that the concentration of Ca2+ and Mg2+ in lake water and ice cations is relatively low, which were 1.37 and 7.0 mg·L-1 in ice and 4.01 and 24.53 mg·L-1 in water, respectively.The dominated cation was Na+ and its concentration took the proportion of 92% whether in water or in ice of cations. CO2-3 , HCO-3 and Cl- were the dominated ions in ice body and water body of anions. Their average concentrations are 435. 86, 543. 20 and 539. 97 mg·L-1 in ice body and 1773. 90, 2556. 49 and 1890.08 mg·L-1 in water body, respectively. Piper figure indicated that the hydro?chemical type of the lake water quality belonged to Na+?CO2-3 ?Cl-?HCO-3 . Gibbs figure showed the ions composition was controlled by evaporation?concentration and rock weathering. By analyzing the correlations among TP,TDS,Mg2+,Ca2+ and Cl-,the compositions of Mg2+and Ca2+ in water body displayed no change with depth, but in ice body the variation was irregular. And also, there was no correlation between TP and Cl-in the water body and their correlation in the ice body was not obvious. However, TP and TDS had a stronger correlation, which r=0.94 in water and r=0.90 in ice, respectively. It indicated that TDS can trace the process of TP migration with the increase of ice thickness and water depth during the icebound season.

参考文献

[1] 张英 .冰及氨基酸水合中氢键的中子散射及第一性原理研究[D].山东大学,2006.
[2] Weeks W .Sea ice:the potential of remote sensing[J].OCEANUS,1981,24:39-48.
[3] 张岩,李畅游,SHEN Hung Tao,史小红,乔玲敏.乌梁素海湖泊冰生长过程中总氮的迁移规律[J].水科学进展,2013(05):728-735.
[4] 王利明,甄志磊,于瑞雪,胡其图.冰封期和非冰封期达里诺尔湖营养盐分布特征分析[J].节水灌溉,2015(02):37-39.
[5] 蒲焘,何元庆,朱国锋,张蔚,曹伟宏,常丽,王春凤.丽江盆地地表-地下水的水化学特征及其控制因素[J].环境科学,2012(01):48-54.
[6] 王鹏,尚英男,沈立成,伍坤宇,肖琼.青藏高原淡水湖泊水化学组成特征及其演化[J].环境科学,2013(03):874-881.
[7] 叶宏萌,袁旭音,葛敏霞,李继洲,孙慧.太湖北部流域水化学特征及其控制因素[J].生态环境学报,2010(01):23-27.
[8] 侯昭华,徐海,安芷生.青海湖流域水化学主离子特征及控制因素初探[J].地球与环境,2009(01):11-19.
[9] 胡春华,周文斌,夏思奇.鄱阳湖流域水化学主离子特征及其来源分析[J].环境化学,2011(09):1620-1626.
[10] 孙园园,何江,吕昌伟,王维,樊明德,任丽敏,麻涛.达里诺尔湖沉积物中无机碳的形态组成[J].生态学报,2013(02):610-618.
[11] Xiao J L;Chang Z G;Si B et al.Partitioning of the grain-size components of Dali Lake core sediments:evidence for lake-level changes during the Holocene[J].Journal of Paleolimnology,2009,42:249-260.
[12] Xiao J L;Si B;Zhai D Y et al.Hydrology of Dali Lake in central-eastern Inner Mongolia and Holocene East Asian monsoon variability[J].Journal of Paleolimnology,2008,40:519-528.
[13] 甄志磊,李畅游,李文宝,胡其图,刘晓旭,刘志娇,于瑞雪.内蒙古达里诺尔湖流域地表水和地下水环境同位素特征及补给关系[J].湖泊科学,2014(06):916-922.
[14] 甄志磊,张生,史小红,孙标.基于遥感技术的达里诺尔湖湖面演化研究[J].中国农村水利水电,2013(07):6-9.
[15] Zhen Z L;LI C Y;Zhang S.Characteristics and indications of hydrogen and oxygen isotopes distribution in lake ice body[J].Water Science and Technology,2015:1065-1072.
[16] 国家环保局《水和废水监测分析方法》编委会.水和废水监测分析方法[M].北京:中国环境科学出版社,1989:57.
[17] 郑喜玉;张明刚;徐旭.中国盐湖志[M].北京:科学出版社,2002:3-42.
[18] 唐玺雯,吴锦奎,薛丽洋,张明泉,Frauke Barthold,Lutz Breuer,Hans-Georg Frede.锡林河流域地表水水化学主离子特征及控制因素[J].环境科学,2014(01):131-142.
[19] 孙媛媛,季宏兵,罗建美,江用彬,李甜甜.赣南小流域的水文地球化学特征和主要风化过程[J].环境化学,2006(05):550-557.
[20] 鞠建廷,朱立平,汪勇,谢曼平,彭平,甄晓林,王君波.藏南普莫雍错流域水体离子组成与空间分布及其环境意义[J].湖泊科学,2008(05):591-599.
[21] Gibbs R J .Mechanisms controlling world water chemistry[J].SCIENCE,1970,170(3962):1088-1090.
[22] Gurrieri J T;Furniss G .Estimation of groundwater exchange in alpine lakes using non-steady mass-balance methods[J].Journal of Hydrology,2004,297:187-208.
[23] Carmen Robinson;C.S.Boxe;M.I.Guzman;A.J.Colussi;M.R.Hoffmann .Acidity of Frozen Electrolyte Solutions[J].The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical,2006(15):7613-7616.
[24] 王亚俊,孙占东.中国干旱区的湖泊[J].干旱区研究,2007(04):422-427.
[25] 王利书,唐泽军.石羊河流域地下水循环的同位素和地球化学演化特征[J].环境科学学报,2013(06):1748-1755.
[26] Zhang Y;Li C Y;Shi X H et al.Total dissolved solids migration in Ulansuhai Lake in natural freezing process[J].Journal of arid land,2012,4(1):85-94.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%