{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"利用流延法成膜和热压烧结工艺制备出了ZrB2-SiC层和石墨层交替排列、层厚均匀、界面清晰的ZrB2-SiC/C层状复合陶瓷.采用循环氧化法对ZrB2-SiC和ZrB2-SiC/C层状复合陶瓷在1000℃及1300℃空气中的氧化动力学曲线进行了研究.结果表明:在1000℃氧化增重时,ZrB2-SiC/C层状复合陶瓷在氧化反应初期表现为氧化增重,随着时间的增加,表现为氧化减重.在1300℃时,ZrB2-SiC/C层状复合陶瓷由于基体层ZrB2-SiC和弱夹层石墨相的氧化规律的相互叠加,使得其氧化增重曲线表现为抛物线规律.由XRD分析及扫描电镜观察发现,1300℃氧化15 h后,试样中不存在弱夹层石墨相,由于石墨相的挥发,材料残留孔隙.","authors":[{"authorName":"贺超","id":"1aae5194-010d-4190-88e6-df5dc35d3f9f","originalAuthorName":"贺超"},{"authorName":"田贵山","id":"c14e1103-945f-46e1-bbf4-7868052e19e7","originalAuthorName":"田贵山"},{"authorName":"穆晓岑","id":"d8e7b77e-b371-470f-ad54-6c148bbd9b18","originalAuthorName":"穆晓岑"},{"authorName":"魏春城","id":"48892730-0461-4c5a-85c5-376b932c82a5","originalAuthorName":"魏春城"},{"authorName":"王继浩","id":"4fc3e3a7-0567-4c7f-b7d2-f59621e7cb2c","originalAuthorName":"王继浩"}],"doi":"","fpage":"1413","id":"280116b0-f11a-4e4b-b96c-2658e88909a1","issue":"6","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"a1ad5a05-df33-473f-b8cc-b377568958dd","keyword":"ZrB2-SiC/C","originalKeyword":"ZrB2-SiC/C"},{"id":"861bc493-5484-4bab-9fbb-c6ef8fe1b22a","keyword":"层状复合陶瓷","originalKeyword":"层状复合陶瓷"},{"id":"24058e46-451a-41c1-896a-51930b17a525","keyword":"微观结构","originalKeyword":"微观结构"},{"id":"16e3fd58-63e1-4b7f-81a2-ae278597f1fe","keyword":"高温氧化","originalKeyword":"高温氧化"}],"language":"zh","publisherId":"gsytb201206015","title":"ZrB2-SiC/C层状复合陶瓷的高温氧化行为","volume":"31","year":"2012"},{"abstractinfo":"采用两种不同素坯成型工艺制备层状C/ZrB2-SiC复合材料,并对其微观结构和力学性能进行研究.结果表明:高温下预压成型制备的层状ZrB2-SiC复合材料层厚均匀,界面平直,弯曲强度和断裂韧性较高,分别达到427MPa和11.3 MPa·m1/2.而室温下预压成型各层厚度不均,界面弯曲,出现界面交叉现象,弯曲强度和断裂韧性较低,分别为277 MPa和9.4 MPa·m1/2.采用素坯高温预压成型制备的层状C/ZrB2-SiC复合材料力学性能较高,主要归因于界面平直,裂纹交替通过基体层和界面层,裂纹的扩展路径变长,断裂功增加.","authors":[{"authorName":"魏春城","id":"e0eef743-fa3a-4ec3-b22d-180173a14836","originalAuthorName":"魏春城"},{"authorName":"叶长收","id":"10a172bd-ab39-4cf6-8cca-8c67e3b05bab","originalAuthorName":"叶长收"},{"authorName":"孟凡涛","id":"e9342856-d6f5-495a-ac12-540237ace665","originalAuthorName":"孟凡涛"},{"authorName":"张泳昌","id":"ca3d8175-c85f-4205-be77-0dda6e0ed35a","originalAuthorName":"张泳昌"}],"doi":"","fpage":"493","id":"ca0231b3-f45d-4ed5-8b14-bc1ce60ea0fa","issue":"2","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"0b130be5-5297-4dbe-80c0-b7c4a3ba6c49","keyword":"预压成型","originalKeyword":"预压成型"},{"id":"49a61df8-57b4-4925-9a01-6a4d3a4db978","keyword":"C/ZrB2-SiC","originalKeyword":"C/ZrB2-SiC"},{"id":"a7604147-ee57-441f-a0b6-09f8d0f95767","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"563a0fab-4f2f-4eed-b0aa-c9c8552ee0fb","keyword":"弯曲强度","originalKeyword":"弯曲强度"},{"id":"b932bca6-c0f4-4ac0-bffa-1675c1945505","keyword":"断裂韧性","originalKeyword":"断裂韧性"}],"language":"zh","publisherId":"rgjtxb98201502035","title":"层状C/ZrB2-SiC复合材料素坯成型工艺的研究","volume":"44","year":"2015"},{"abstractinfo":"为提高C/C复合材料的抗烧蚀性能,采用两步刷涂-烧结法制备了 ZrB2-SiC 基陶瓷涂层。首先利用反应烧结制备ZrB2-SiC-ZrC过渡层,并在此基础上制备了ZrB2-20%SiC-5%Si3 N4、 ZrB2-15%SiC-20%MoSi2、 ZrB2-15%SiC-20%TaC 3种外涂层。利用 XRD和扫描电镜研究了涂层的相组成和显微形貌,并采用氧乙炔焰烧蚀仪测试了涂层在2500℃、60 s的抗烧蚀性能,探讨了涂层的高温烧蚀机理。结果表明:利用反应烧结制备的过渡层与基体结合紧密,且与外涂层无明显分层现象,起到了良好的过渡作用;由于 Si3 N4及 MoSi2起到了烧结助剂作用,使 ZrB2-20%SiC-5%Si3 N4、 ZrB2-15%SiC-20%MoSi2外涂层结构较为致密; ZrB2-20%SiC-5%Si3 N4、 ZrB2-15%SiC-20%MoSi2涂层表现出了较好的抗烧蚀性能,其中 ZrB2-20%SiC -5%Si3 N4涂层线烧蚀率及质量烧蚀率分别为0.075 mm/s、0.0081 g/s, ZrB2-15%SiC-20%MoSi2涂层线烧蚀率及质量烧蚀率分别为0.018 mm/s、0.0064 g/s,而ZrB2-15%SiC-20%TaC涂层由于结构较为松散,未能起到有效的氧化防护,导致涂层被烧穿。","authors":[{"authorName":"张天助","id":"5adc5395-ef7e-441c-9a9e-44a9f822fbb8","originalAuthorName":"张天助"},{"authorName":"陈招科","id":"aef87612-7bf0-436e-a6b5-a2e6a084f702","originalAuthorName":"陈招科"},{"authorName":"熊翔","id":"58166e62-1abd-4468-ae2d-b5cda17623cd","originalAuthorName":"熊翔"}],"doi":"10.7502/j.issn.1674-3962.2013.11.04","fpage":"659","id":"ec379926-8539-4805-a1f9-95391d867412","issue":"11","journal":{"abbrevTitle":"ZGCLJZ","coverImgSrc":"journal/img/cover/中国材料进展.jpg","id":"80","issnPpub":"1674-3962","publisherId":"ZGCLJZ","title":"中国材料进展"},"keywords":[{"id":"66372b0f-d7bd-4181-b726-b5f15e5b49da","keyword":"C/C复合材料","originalKeyword":"C/C复合材料"},{"id":"e3efdf92-985a-4acd-8677-594b05254ea4","keyword":"ZrB2-SiC涂层","originalKeyword":"ZrB2-SiC涂层"},{"id":"9a541923-3614-49b9-86db-e5f7c0ff318d","keyword":"刷涂法","originalKeyword":"刷涂法"},{"id":"c751366c-288a-482d-ac26-e1ec4bb22787","keyword":"抗烧蚀","originalKeyword":"抗烧蚀"}],"language":"zh","publisherId":"zgcljz201311006","title":"C/C 复合材料 ZrB2-SiC 基陶瓷涂层制备及烧蚀性能研究","volume":"","year":"2013"},{"abstractinfo":"A novel carbon fiber-reinforced ZrB2-SiC matrix composite was fabricated by heaterless chemical vapor infiltration through infiltration of SiC matrix into a carbon fiber-ZrB2 powder preform. The C/ZrB2-SiC composite presented a flexural strength of 148 MPa, a fracture toughness of 5.6 MPa center dot m(1/2), and a good oxidation and ablation resistance.","authors":[],"categoryName":"|","doi":"","fpage":"3320","id":"e5f05d12-517d-404b-a5a0-287af71c6dbb","issue":"10","journal":{"abbrevTitle":"JOTACS","id":"0e2c67d6-98e8-477b-999d-ec8bc9a7c78a","issnPpub":"0002-7820","publisherId":"JOTACS","title":"Journal of the American Ceramic Society"},"keywords":[{"id":"ba75ff1e-0571-46fa-922d-8c47403a2324","keyword":"oxidation;ceramics","originalKeyword":"oxidation;ceramics"}],"language":"en","publisherId":"0002-7820_2007_10_2","title":"Fabrication and characterization of an ultra-high-temperature carbon fiber-reinforced ZrB2-SiC matrix composite","volume":"90","year":"2007"},{"abstractinfo":"由于在极端环境中的优异物理化学性能,ZrB2基超高温陶瓷材料成为未来空天领域最具前途的候选材料之一,尤其是ZrB2-SiC材料近几年更成为研究热点.本文对ZrB2-SiC材料的制备、烧结致密化和力学性能等研究做了综合评述,重点对制备方法与使用性能间的关系进行了相关介绍.","authors":[{"authorName":"孙新","id":"4a9e7474-072e-407e-904b-0437f49296b6","originalAuthorName":"孙新"},{"authorName":"陈海坤","id":"9e9791ea-3ae9-4ab5-9150-d880bf9b51da","originalAuthorName":"陈海坤"},{"authorName":"卢新坡","id":"cfd40fb9-88ad-4f97-9821-837d7d26a1ed","originalAuthorName":"卢新坡"},{"authorName":"李军平","id":"91257eb5-93b8-4f34-a34f-d2c3554ed804","originalAuthorName":"李军平"},{"authorName":"胡继东","id":"70b2aaf1-d8f2-48be-a7a5-eda83d461cdd","originalAuthorName":"胡继东"}],"doi":"10.3969/j.issn.1007-2330.2012.02.005","fpage":"19","id":"19ad101c-df63-42e8-8b16-610705216040","issue":"2","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"e1d8a988-6a01-4c58-adfe-0dc1d58748e9","keyword":"ZrB2-SiC超高温陶瓷","originalKeyword":"ZrB2-SiC超高温陶瓷"},{"id":"5798c56a-6d9c-426e-b5a9-1120833a4738","keyword":"制备方法","originalKeyword":"制备方法"},{"id":"f62fb482-9daa-4bb1-86ea-22fb0e65b308","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"yhclgy201202005","title":"ZrB2-SiC的制备方法和性能研究","volume":"42","year":"2012"},{"abstractinfo":"利用X-射线衍射、扫描电子显微镜和透射电子显微镜对Cf/ZrC-ZrB2-SiC-C超高温陶瓷复合材料的相组成、纤维/热解碳层的界面特征和超高温陶瓷基体的显微结构特征进行了表征。在碳纤维表面有一层厚度为2~3μm石墨化程度较高的热解碳界面层,该界面层可以避免采用PIP工艺制备超高温陶瓷基体时可能对碳纤维造成的损伤。热解碳层与碳纤维之间为弱机械结合,其界面间分布着20~30nm的ZrC纳米颗粒。Cf/ZrC—ZrB2-SiC—C超高温陶瓷复合材料基体主要由ZrC,ZrB2,SiC和石墨相(Cg)组成。基体中石墨的(002)面沿着ZrC,ZrB2或SiC的表面生长。在石墨与ZrB2和石墨与SiC的界面没有观察到取向关系,界面处既没有反应层也没有非晶相存在。在石墨与ZrC之间存在ZrC(111)//Cg(002),ZrC[110]//Cr[010]的取向关系。ZrB,和SiC之间也没有界面反应和非晶层存在。","authors":[{"authorName":"周延春","id":"656a8a2b-91ba-4878-9482-7475f15761a1","originalAuthorName":"周延春"},{"authorName":"张伟刚","id":"9f509890-e0fd-426a-b36b-f74297ea8979","originalAuthorName":"张伟刚"},{"authorName":"郑丽雅","id":"49b3a2c9-cc98-4fe8-9b71-1984607bc5fd","originalAuthorName":"郑丽雅"}],"doi":"","fpage":"20","id":"68875a55-2f46-4641-9ae6-f148992a908c","issue":"8","journal":{"abbrevTitle":"ZGCLJZ","coverImgSrc":"journal/img/cover/中国材料进展.jpg","id":"80","issnPpub":"1674-3962","publisherId":"ZGCLJZ","title":"中国材料进展"},"keywords":[{"id":"fb90226e-859a-488d-a853-f1cdb113d7ee","keyword":"超高温陶瓷","originalKeyword":"超高温陶瓷"},{"id":"a28f0f05-8d37-451c-b823-898e981a0b97","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"651d775d-39c4-4f05-8b77-2b21286206af","keyword":"显微结构","originalKeyword":"显微结构"},{"id":"2c638a22-3bc9-42c6-a49f-bdd75f8e4141","keyword":"界面","originalKeyword":"界面"}],"language":"zh","publisherId":"zgcljz201208007","title":"Cf/ZrC—ZrB2-SiC—C超高温陶瓷复合材料的显微结构表征","volume":"31","year":"2012"},{"abstractinfo":"通过真空热压工艺制备了ZrB2-SiC材料和Csf(碳短纤维)/ZrB2-SiC超高温陶瓷基复合材料.采用氧乙炔火焰在4186.8kW/m2的热流下分别喷吹烧蚀两种材料180s.ZrB2-SiC材料表而最高温度达到2406°C,烧蚀后质量烧蚀率为-0.14%,线烧蚀率为1×10-3mm/s,Csf/ZrB2-SiC材料表面最高温度达到1883°C,烧蚀后质量烧蚀率为-0.19%,线烧蚀率为-4×10-4mm/s.对两种材料烧蚀表面和剖面的分析发现,ZrB2-SiC材料烧蚀后由表及里依次形成了疏松ZrO2氧化层、SiC富集层和未反应层的三层结构,其中SiC富集层能够起到抗氧化的作用. Csf/ZrB2-SiC材料烧蚀后由外到内分别形成了ZrO2-SiO2氧化层、SiC耗尽层和末反应层的三层结构,其中最外层以ZrO2为骨架,SiO2弥合其中的结构有效地阻挡了烧蚀中氧的侵入.","authors":[{"authorName":"杨飞宇","id":"4799b02a-2c96-4e99-89de-b5dba742a1bb","originalAuthorName":"杨飞宇"},{"authorName":"张幸红","id":"6408ab84-4ff5-4f89-bffb-83abbd7648ec","originalAuthorName":"张幸红"},{"authorName":"韩杰才","id":"dc7c60ff-3ad3-4cc3-90c0-29e45cce4d5c","originalAuthorName":"韩杰才"},{"authorName":"杜善义","id":"8b154cfb-ddb2-44f2-a508-dcd8ce96b260","originalAuthorName":"杜善义"}],"doi":"10.3321/j.issn:1000-324X.2008.04.020","fpage":"734","id":"ddf5b35b-5d4c-4f06-ace9-8998c7ddc906","issue":"4","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"38719aac-e71e-47ff-8d8e-cf44a41a754d","keyword":"ZrB2-SiC","originalKeyword":"ZrB2-SiC"},{"id":"b7157ad8-9759-4dbc-b21a-026ef67f2524","keyword":"Csf/ZrB2-SiC","originalKeyword":"Csf/ZrB2-SiC"},{"id":"9bd740ed-4d25-42fd-b1b8-d36dd3a4ab92","keyword":"超高温陶瓷基复合材料","originalKeyword":"超高温陶瓷基复合材料"},{"id":"663048ff-71ca-4f4b-9533-74d53a06edce","keyword":"烧蚀机理","originalKeyword":"烧蚀机理"}],"language":"zh","publisherId":"wjclxb200804020","title":"ZrB2-SiC和Csf/ZrB2-SiC超高温陶瓷基复合材料烧蚀机理的研究","volume":"23","year":"2008"},{"abstractinfo":"采用包埋法、超音速等离子喷涂结合化学气相沉积工艺在C/C复合材料表面制备了SiC/ZrB2-SiC/SiC复合涂层.借助XRD和SEM等测试手段对所制备复合涂层的微观结构进行表征,采用恒温氧化实验及氧乙炔烧蚀实验考察涂层复合材料的高温抗氧化和抗烧蚀性能.结果表明,所制备涂层复合材料在900,1100,1500℃均具有较好的高温抗氧化性能,涂层氧乙炔烧蚀60 s后,质量烧蚀率和线烧蚀率分别为-0.05 mg/s和0.56μm/s.表明所制备的ZrB2-SiC基复合涂层在为C/C复合材料提供良好的抗烧蚀保护的同时,可对材料提供较宽温度范围的抗氧化保护.","authors":[{"authorName":"任俊杰","id":"63559778-9c30-448c-8fc6-96b2ec2464bb","originalAuthorName":"任俊杰"},{"authorName":"姚西媛","id":"8abbe547-9675-4a1a-b358-23e00bd694f5","originalAuthorName":"姚西媛"},{"authorName":"李克智","id":"205a648a-20aa-40a5-a633-8b4d9eab8926","originalAuthorName":"李克智"},{"authorName":"姚栋嘉","id":"3aebd45e-24bc-4355-9bd6-d57a9fccbc46","originalAuthorName":"姚栋嘉"}],"doi":"10.7502/j.issn.1674-3962.2017.01.10","fpage":"75","id":"c1624da6-6d27-4f0e-a507-505e74ca46a3","issue":"1","journal":{"abbrevTitle":"ZGCLJZ","coverImgSrc":"journal/img/cover/中国材料进展.jpg","id":"80","issnPpub":"1674-3962","publisherId":"ZGCLJZ","title":"中国材料进展"},"keywords":[{"id":"1bf15b06-468b-46bd-bfb6-3d101e66041c","keyword":"炭/炭复合材料","originalKeyword":"炭/炭复合材料"},{"id":"063fb30c-8d4f-4ac4-b670-480550e6c234","keyword":"抗氧化","originalKeyword":"抗氧化"},{"id":"16568d7c-4d49-47e3-8be6-f550e573746e","keyword":"抗烧蚀","originalKeyword":"抗烧蚀"},{"id":"02d36e7b-31d0-4cd8-b0a0-022ea871a3a0","keyword":"ZrB2-SiC","originalKeyword":"ZrB2-SiC"}],"language":"zh","publisherId":"zgcljz201701010","title":"超音速等离子喷涂制备ZrB2-SiC基涂层C/C复合材料的氧化烧蚀性能研究","volume":"36","year":"2017"},{"abstractinfo":"通过真空热压工艺制备了ZrB2-SiC材料和Csf(碳短纤维)/ZrB2-SiC超高温陶瓷基复合材料. 采用氧乙炔火焰在4186.8kW/m2的热流下分别喷吹烧蚀两种材料180s. ZrB2-SiC材料表面最高温度达到2406℃, 烧蚀后质量烧蚀率为-0.14%, 线烧蚀率为-1×10-3mm/s, Csf/ZrB2-SiC材料表面最高温度达到1883℃, 烧蚀后质量烧蚀率为-0.19%, 线烧蚀率为-4×10-4mm/s. 对两种材料烧蚀表面和剖面的分析发现, ZrB2-SiC材料烧蚀后由表及里依次形成了疏松ZrO2氧化层、SiC富集层和未反应层的三层结构, 其中SiC富集层能够起到抗氧化的作用. Csf/ZrB2-SiC
材料烧蚀后由外到内分别形成了ZrO2-SiO2氧化层、SiC耗尽层和未反应层的三层结构, 其中最外层以ZrO2为骨架, SiO2弥合其中的结构有效地阻挡了烧蚀中氧的侵入.","authors":[{"authorName":"杨飞宇","id":"b8fbbc27-c108-415b-9ffe-982a8f12b31f","originalAuthorName":"杨飞宇"},{"authorName":"张幸红","id":"eb56bad5-68b5-4eb6-b5b2-5a56564a7053","originalAuthorName":"张幸红"},{"authorName":"韩杰才","id":"a66e2a39-eb5a-4304-afad-8441e3b38ab9","originalAuthorName":"韩杰才"},{"authorName":"杜善义","id":"982cef7e-9277-400c-b4db-3f585dd11621","originalAuthorName":"杜善义"}],"categoryName":"|","doi":"10.3724/SP.J.1077.2008.00734","fpage":"734","id":"147b8335-a14f-42b2-b94b-59dd26c20129","issue":"4","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"4535af02-db1e-4f0c-9dbf-f0a5f8ddf2f7","keyword":"ZrB2-SiC","originalKeyword":"ZrB2-SiC"},{"id":"af36747d-399a-4a2f-bb87-9f32c14cdf73","keyword":" Csf /ZrB2-SiC","originalKeyword":" Csf /ZrB2-SiC"},{"id":"8ffd405d-cfce-48e5-9445-bdecffb9e190","keyword":" ultra-high temperature ceramic composites","originalKeyword":" ultra-high temperature ceramic composites"},{"id":"73ac9031-e6a1-43b7-802f-19ee927b53ad","keyword":" ablation mechanism","originalKeyword":" ablation mechanism"}],"language":"zh","publisherId":"1000-324X_2008_4_30","title":"ZrB2-SiC和Csf/ZrB2-SiC超高温陶瓷基复合材料烧蚀机理的研究","volume":"23","year":"2008"},{"abstractinfo":"综述了ZrB2-SiC复相陶瓷近年来的研究现状。总结了无压烧结、反应热压烧结、热压烧结、放电等离子烧结和一些其他方法制备ZrB2-SiC复相陶瓷的研究成果,并提出了ZrB2-SiC复相陶瓷目前研究中存在的问题和今后潜在的发展方向。","authors":[{"authorName":"杜爽","id":"0f1c97ad-f58c-4362-b769-0274bce58bcc","originalAuthorName":"杜爽"},{"authorName":"曹迎楠","id":"44bb5b79-a53f-45d2-9a03-7491e03368a3","originalAuthorName":"曹迎楠"},{"authorName":"张海军","id":"0274f735-e85b-440b-979c-89915cee254e","originalAuthorName":"张海军"},{"authorName":"张少伟","id":"e858528e-66bb-4caa-a955-6a9dad34dc8f","originalAuthorName":"张少伟"},{"authorName":"张振聪","id":"0af8cc18-7da6-4cdc-a26c-833f7c78a0e6","originalAuthorName":"张振聪"}],"doi":"10.3969/j.issn.1001-1935.2014.03.017","fpage":"224","id":"059c2592-3994-4c7f-949b-3487975ddf2c","issue":"3","journal":{"abbrevTitle":"NHCL","coverImgSrc":"journal/img/cover/NHCL.jpg","id":"55","issnPpub":"1001-1935","publisherId":"NHCL","title":"耐火材料 "},"keywords":[{"id":"307f45a0-6444-4412-a19a-c634c7d449ca","keyword":"ZrB2-SiC","originalKeyword":"ZrB2-SiC"},{"id":"663cc651-ad8e-4279-9f36-d70894722378","keyword":"复相陶瓷","originalKeyword":"复相陶瓷"},{"id":"c8cdab86-26a2-448d-bb6d-221192c9684e","keyword":"制备方法","originalKeyword":"制备方法"}],"language":"zh","publisherId":"nhcl201403021","title":"ZrB2-SiC复相陶瓷制备方法研究现状","volume":"","year":"2014"}],"totalpage":9283,"totalrecord":92821}