欢迎登录材料期刊网

材料期刊网

高级检索

采用PDA、NA以及高氏一号培养基,分别从毛白杨、绦柳、荻以及二穗短柄草植株内分离、纯化出37株内生菌,其中34株为细菌,3株为放线菌。以分离纯化得到菌株各自对应的营养培养基并添加不同浓度的污染物对获得的37株内生菌进行污染物的耐受筛选,发现24株分别对20 mg·L-1的aroclor1254和BDE209具有一定的耐受性。利用无机盐培养基并添加污染物作为微生物唯一碳源筛选,发现菌株CPY?4和菌株SGL?1可以在只提供4?BDE的无机盐培养基中存活,菌株 CPY?4,SGL?1、菌株4、菌株13可以在提供 BDE209和aroclor1254的无机盐培养基中存活。形态学观察和16SrDNA序列同源性分析,初步确定菌株SGL?1为克雷伯氏菌属,菌株CPY?4为地衣芽胞杆菌,菌株4和菌株13为肠杆菌属。

Thirty seven endophytic bacteria were isolated from Populus tomentosa,Salix matsudana f.pendula,Triarrherca sacchariflora and Brachypodium distachyon by PDA,NA and Trypticase Soy Broth media. Three strains were actinomycetes and the other 34 ones belonged to bacteria. Twenty four endophytic bacteria were founded to tolerate 20 mg·L-1 BDE209 or aroclor1254 in each corresponding culture media including PDA,NA and Trypticase Soy Broth meida. The strain CPY?4 and the strain SGL?1 could use 4?BDE as their carbon source in each inorganic salt culture media respectively. Four strains, CPY?4, SGL?1, 4 and 13 could utilize the BDE209 and aroclor1254 jointly supplied in each inorganic salt culture media. Morphological observation and the 16SrDNA sequence analysis showed the strain 4 and the strain 13 were Enterobacter sp., the strain SGL?1 was Klebsiella sp. and the strain CPY?4 was Bacillus licheniformis.

参考文献

[1] Wu J P;Luo X J;Zhang Y et al.Biomagnification of polybrominnated diphenyl ethers (PBDEs) and polychlorinated biphenyls in a highly contaminated freshwater food web from South China[J].Environmental Pollution,2009,157:904-909.
[2] 余刚,黄俊,张彭义.持久性有机污染物:倍受关注的全球性环境问题[J].环境保护,2001(04):37-39.
[3] 高学晟,姜霞,区自清.多环芳烃在土壤中的行为[J].应用生态学报,2002(04):501-504.
[4] GUNILLA SODER STROM;ULLA SELLSTROM;CYNTHIA A. DE WIT;MATS TYSKLIND .Photolytic Debromination of Decabromodiphenyl Ether (BDE 209)[J].Environmental Science & Technology: ES&T,2004(1):127-132.
[5] Alexandre Konstantinov;Dorin Bejan;Nigel J. Bunce;Brock Chittim;Robert McCrindle;Dave Potter;Colleen Tashiro .Electrolytic debromination of PBDEs in DE-83~(TM) technical decabromodiphenyl ether[J].Chemosphere: Environmental toxicology and risk assessment,2008(8):1159-1162.
[6] Young-Soo Keum;Qing X.Li .Reductive Debromination of Polybrominated Diphenyl Ethers by Zerovalent Iron[J].Environmental Science & Technology: ES&T,2005(7):2280-2286.
[7] 吴海珍,韦朝海,周盛.典型POPs的生物降解修复技术研究与发展[J].生态环境学报,2012(01):166-171.
[8] 张祺玲,杨宇红,谭周进,谢丙炎.植物内生菌的功能研究进展[J].生物技术通报,2010(07):28-34.
[9] 孙凯,刘娟,李欣,凌婉婷.两株具有芘降解功能的植物内生细菌的分离筛选及其特性[J].生态学报,2014(04):853-861.
[10] Newman LA;Reynolds CM .Bacteria and phytoremediation: new uses for endophytic bacteria in plants[J].Trends in Biotechnology,2005(1):6-8.
[11] 陈小兵,盛下放,何琳燕,江春玉,孙乐妮,马海燕.具菲降解特性植物内生细菌的分离筛选及其生物学特性[J].环境科学学报,2008(07):1308-1313.
[12] Garipova S R .Perspectives on using endophytic bacteria for the bioremediation of arable soils polluted by residual amounts of pesticides and xenobiotics[J].Biology Bulletin Reviews,2014(4):300-310.
[13] Ho Y N;Shih C H;Hsiao S C .A novel endophytic bacterium,Achromobacter xylosoxidans,helps plants against pollutant stress and improves phytoremediation[J].Journal of Bioscience and Bioengineering,2009,108:S75-S95.
[14] 刘爽,刘娟,凌婉婷,朱雪竹,高彦征.一株高效降解菲的植物内生细菌筛选及其生长特性[J].中国环境科学,2013(01):95-102.
[15] 倪雪,刘娟,高彦征,朱雪竹,孙凯.2株降解菲的植物内生细菌筛选及其降解特性[J].环境科学,2013(02):746-752.
[16] 罗红艳,李吉跃,刘增.绿化树种对大气SO2的净化作用[J].北京林业大学学报,2000(01):45-50.
[17] 范希峰,左海涛,侯新村,武菊英.芒和荻作为草本能源植物的潜力分析[J].中国农学通报,2010(14):381-387.
[18] Aken B V;Correa P A;Schnoor J L .Phytoremediation of polychlorinated biphenyls:New trends and promises[J].Environmental Science and Technology,2101,44(8):2767-2776.
[19] 陈泽斌,代方平,寸林江,李啟,陈艳芳,许石剑,方飞,黄杨.烟草内生细菌分离方法的优化研究[J].中国烟草学报,2014(01):90-95,102.
[20] 何佳,刘笑洁,赵启美,陈钧.植物内生真菌分离方法的研究[J].食品科学,2009(15):180-183.
[21] 东秀珠;蔡少英.常见细菌系统鉴定手册[M].北京:科学出版社,2001:353-387.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%