欢迎登录材料期刊网

材料期刊网

高级检索

为了实现剩余污泥资源化,本实验采用了超声波破壁的预处理方式,构建了以剩余污泥破壁处理混合液为阳极液和以KMnO4溶液为阴极液的序批式双室微生物燃料电池( Microbial Fuel Cells,MFC).将MFC的输出功率密度和COD去除速率作为电池性能的考察指标,研究了超声预处理和投加污泥量对MFC性能的影响.结果表明,随着对投加污泥预处理比(超声预处理污泥量占投加污泥量的比例)和投加污泥浓度的上升, MFC的输出功率密度和 COD 去除速率也随之上升,在100%污泥预处理比下输出功率密度峰值为296 mW·m-2( Rext=1000Ω);平均COD去除速率为90 mg·L-1·d-1.在投加污泥浓度为8000 mg·L-1时,输出功率密度峰值为476 mW·m-2( Rext=1000Ω);平均COD去除速率为100 mg·L-1·d-1.由实验结果分析,采用超声波破壁预处理高浓度的剩余污泥作为燃料搭建MFC,可提高微生物燃料电池的产电性能和COD去除速率.

In order to achieve the utilization of excess sludge, a double?chamber microbial fuel cell ( MFC ) was built, which included the anode chamber filled with mixture of ultrasonic?pretreated excess sludge and the cathode chamber with KMnO4 . The effect of ultrasonic pretreatment and concentration of sludge on the MFC performance was investigated, using the output power density and the removal efficiency of COD as the performance indicators. The results showed that the output power density and removal COD increased with the pretreating ratio ( the ratio of sludge pretreated to the total sludge) and the sludge concentration. At 100% pretreatment ratio, the output power density peaked at 296 mW·m-2(Rext=1000 Ω), and the average removal COD reached 90 mg·L-1·d-1. With the sludge concentration of 8000 mg·L-1 , the output power density reached a peak of 476 mW·m-2(Rext=1000 Ω), and the average removal COD reached 100 mg·L-1·d-1. Our study shows that high concentration of excess sludge pretreated by ultrasonic could effectively improve the power performance and COD removal of the MFC.

参考文献

[1] 张自杰;林荣忱;金儒霖.排水工程下册(第四版)[M].北京:中国建筑工业出版社,2000:1-2.
[2] Neto S A;Forti J C;Andrade A R D .An overview of enzymatic biofuel cells[J].Electrocatal,2010,1:87-94.
[3] 刘强,许鑫华,任光雷,王为.酶生物燃料电池[J].化学进展,2006(11):1530-1537.
[4] 王万成,陶冠红.微生物燃料电池运行条件的优化[J].环境化学,2008(04):527-530.
[5] 吴瑾妤,赵娟,李秀芬,陈坚.基于pH值调控的沉积型微生物燃料电池(SMFC)运行特性[J].环境化学,2011(06):1162-1167.
[6] 孙晓杰;赵孝芹;罗洁瑜 等.剩余污泥微生物燃料电池产电性能的优化试验研究[J].环境科学与技术,2014,37(8):161-164.
[7] 崔金娟,吴纯德,许小洁,李商国.碳酸氢钠对微波预处理剩余污泥的促进作用研究[J].水处理技术,2009(08):66-68.
[8] 张廷滔,张礼霞,高平,李大平.混合菌群生物燃料电池的产电机理与特性[J].应用与环境生物学报,2012(03):465-470.
[9] 赵庆良,张金娜,尤世界,姜珺秋.不同阴极电子受体从生物燃料电池中发电的比较研究[J].环境科学学报,2006(12):2052-2057.
[10] Oh S E;Logan B E .Hydrogen and eleetrieity Production froma food Proeessing Wastewater usingfermentation and microbial fuel cell technologies[J].WaterRes,2005,39(19):4673-4682.
[11] Kim H J;Park H S;Hyun M S et al.Amediator-lessmicrobial fuel cell using a metal reducing bacterium, Shewanella putrefacians[J].Enzyme Microbiol.Technol,2002,30:145-152.
[12] Chaudhuri SK;Lovley DR .Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells[J].Nature biotechnology,2003(10):1229-1232.
[13] Park H S;Kim B H;Kim H S et al.A novelelect rochemically active and Fe (III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell[J].ANAEROBE,2001,7:297-306.
[14] Pham CA.;Jung SJ.;Phung NT.;Lee J.;Chang IS.;Kim BH.;Yi H.;Chun J. .A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell[J].FEMS Microbiology Letters,2003(1):129-134.
[15] Lovley D R;Phillips EJP .Novel mode of microbial energymet abolism:organic carbon coupled to dissimilatory reduction of iron or manganese[J].APPLIED AND ENVIRONMENTAL MICROBIOLOGY,1988,54:1472-1480.
[16] Cigdem Eskicioglu;Ronald L. Droste;Kevin J. Kennedy .Performance of Anaerobic Waste Activated Sludge Digesters After Microwave Pretreatment[J].Water Environment Research,2007(11):2265-2273.
[17] 王艳 .废水生物处理过程中有机物去除模式的研究[D].秦皇岛:燕山大学,2011.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%