欢迎登录材料期刊网

材料期刊网

高级检索

汞是通过大气进行长距离传输的全球污染物,引起国际社会和学术界高度关注。陆地森林生态系统是全球物质循环最为活跃的地方,但其对全球汞的生物地球化学循环影响的认识还不清楚。同时,森林生态系统汞的生物地球化学循环过程可能对全球大气汞同位素组成产生重要的影响,但目前这两方面的研究还非常缺乏,制约了对全球尺度汞的生物地球化学循环深化规律的把握。本课题组拟在我国温带和亚热带选择3个森林小流域,首先系统开展森林小流域汞的质量平衡研究工作,深入刻画森林流域汞的生物地球化学演化规律,在此基础上开展流域汞的生物地球化学循环过程中汞同位素的分馏特征研究,最终建立流域尺度森林系统汞及其同位素的生物地球化学模型。该项目将极大推进对森林流域尺度汞的生物地球化学循环的认识,探讨森林生态系统与大气汞交换过程对全球尺度汞生物地球化学循环和对大气汞同位素组成的影响,为最终建立基于汞同位素的全球汞生物地球化学循环模型提供基础数据。

Mercury is regarded as a global pollutant due to the fact that it can be transported for a long distance in the atmosphere, and thus attracts attentions from both public sectors and scientific society. The mass exchanges in forest ecosystems are very active, but the role of forest ecosystem on global mercury geochemical cycling is still largely unknown. Meanwhile, the cycling of mercury in forest ecosystem may have altered mercury isotope ratios in the atmosphere. However, so far the knowledge on these two aspects is still lacking , hindering our understanding of the global cycle of mercury in the environment. In the project, we will select 3 small forest catchments from subtropical and temperate regions in China as our study areas. First of all, we will establish a detailed mercury mass balance in the ecosystems, and decipher the biogeochemical cycling of mercury in forest ecosystems. Based on this, we will investigate mercury isotope fractionation during mercury geochemical cycling processes in the forest ecosystems. Finally, we will develop biogeochemical cycling models in forest ecosystem for both mercury and mercury isotopes. Our project will advance our knowledge on mercury cycling in forest ecosystems, and discuss the impact of mercury exchange between atmosphere and forest on the global cycling of mercury in the atmosphere and on mercury isotope ratios in global atmosphere. In the end, our project will provide important data for the development of new generation global mercury models based on mercury isotope information.

参考文献

[1] Lindqvist O;Johansson K;Aastrup M et al.Mercury in the swedish environment-recent research on causes,consequences and corrective methods[J].Water,Air,and Soil Pollution,1991,55(1/2):R11-.
[2] Noelle E. Selin.Global Biogeochemical Cycling of Mercury: A Review[J].Annual review of environment and resources,2009:43-63.
[3] Noelle E. Selin;Daniel J. Jacob;Rokjin J. Park;Robert M. Yantosca;Sarah Strode;Lyatt Jaeglé;Daniel Jaffe .Chemical cycling and deposition of atmospheric mercury: Global constraints from observations[J].Journal of Geophysical Research, D. Atmospheres: JGR,2007(d2):D02308-1-D02308-14-0.
[4] Selin NE;Jacob DJ;Yantosca RM;Strode S;Jaegle L;Sunderland EM .Global 3-D land-ocean-atmosphere model for mercury: Present-day versus preindustrial cycles and anthropogenic enrichment factors for deposition[J].Global Biogeochemical Cycles,2008(2):GB2011-1-GB2011-13-0.
[5] Ryaboshapko A;Bullock OR;Christensen J;Cohen M;Dastoor A;Ilyin I;Petersen G;Syrakov D;Artz RS;Davignon D .Intercomparison study of atmospheric mercury models: 1. Comparison of models with short-term measurements[J].Science of the Total Environment,2007(1/3):228-240.
[6] Alexey Ryaboshapko;O. Russell Bullock Jr.;Jesper Christensen;Mark Cohen;Ashu Dastoor;Ilia Ilyin;Gerhard Petersen;Dimiter Syrakov;Oleg Travnikov;Richard S. Artz;Didier Davignon;Roland R. Draxler;John Munthe;Jozef Pacyna .Intercomparison study of atmospheric mercury models: 2. Modelling results vs. long-term observations and comparison of country deposition budgets[J].Science of the Total Environment,2007(2/3):319-333.
[7] Lin CJ;Pongprueksa P;Lindberg SE;Pehkonen SO;Byun D;Jang C .Scientific uncertainties in atmospheric mercury models I: Model science evaluation[J].Atmospheric environment,2006(16):2911-2928.
[8] O. Russell Bullock Jr.;Katherine A. Brehme .Atmospheric mercury simulation using the CMAQ model: formulation description and analysis of wet deposition results[J].Atmospheric environment,2002(13):2135-2146.
[9] Ryaboshapko A.;Bullock R.;Ebinghaus R.;Ilyin I.;Lohman K.;Munthe J. Petersen G.;Seigneur C.;Wangberg I. .Comparison of mercury chemistry models[J].Atmospheric environment,2002(24):3881-3898.
[10] Seigneur C.;Lohman K.;Vijayaraghavan K.;Shia RL.;Karamchandani P. .Multiscale modeling of the atmospheric fate and transport of mercury[J].Journal of Geophysical Research. Biogeosciences,2001(D21):27795-27809.
[11] Bergan T;Rodhe H;Gallardo L .Mercury in the global troposphere: A three-dimensional model study[J].Atmospheric environment,1999(10):1575-1585.
[12] Jung G;Hedgecock I M;Pirrone N .ECHMERIT V1. 0-A new global fully coupled mercury-chemistry and transport model[J].Geoscientific Model Development,2009(2):175-195.
[13] Travnikov O;Lin C J;Dastoor A.Hemispheric transport of air pollution part b:mercury, chapter 4, global and regional modelling//pirrone n, keating t. hemispheric transport of air pollution part b:mercur[M].New York:UNITED NATIONS PUBLICATION,2010:97-138.
[14] FAO .Percentage of land area covered by forest in 2010[EB/OL].http://unstats.un.org/unsd/environment/forestarea.htm,2014- 03- 10.
[15] Yude Pan;Richard A. Birdsey;Jingyun Fang;Richard Houghton;Pekka E. Kauppi;Werner A. Kurz;Oliver L. Phillips;Anatoly Shvidenko;Simon L. Lewis;Josep G. Canadell;Philippe Ciais;Robert B. Jackson;Stephen W. Pacala;A. David McGuire;Shilong Piao;Aapo Rautiainen;Stephen Sitch;Daniel Hayes .A Large and Persistent Carbon Sink in the World's Forests[J].Science,2011(Aug.19 TN.6045):988-993.
[16] D. Obrist;D.W. Johnson;S.E. Lindberg .Mercury Distribution Across 14 U.S. Forests. Part I: Spatial Patterns of Concentrations in Biomass, Litter, and Soils[J].Environmental Science & Technology: ES&T,2011(9):3974-3981.
[17] Graydon, J.A.;St. Louis, V.L.;Lindberg, S.E.;Sandilands, K.A.;Rudd, J.W.M.;Kelly, C.A.;Harris, R.;Tate, M.T.;Krabbenhoft, D.P.;Emmerton, C.A.;Asmath, H.;Richardson, M. .The role of terrestrial vegetation in atmospheric Hg deposition: Pools and fluxes of spike and ambient Hg from the METAALICUS experiment[J].Global Biogeochemical Cycles,2012(1):GB1022-1-GB1022-14.
[18] Gustin MS;Lindberg SE;Weisberg PJ .An update on the natural sources and sinks of atmospheric mercury[J].Applied Geochemistry: Journal of the International Association of Geochemistry and Cosmochemistry,2008(3):482-493.
[19] Obrist D .Atmospheric mercury pollution due to losses of terrestrial carbon pools?[J].Biogeochemistry,2007(2):119-123.
[20] Lindberg SE.;Meyers TP.;Kim KH.;Hanson PJ. .Air/surface exchange of mercury vapor over forests - The need for a reassessment of continental biogenic emissions[J].Atmospheric environment,1998(5):895-908.
[21] Lindberg S E;Jackson D R;Huckabee J W et al.Atmospheric emission and plant uptake of mercury from agricultural soils near the almaden mercury mine[J].Journal of Environmental Quality,1979,8(4):572-578.
[22] Suraj K. Shetty;Che-Jen Lin;David G. Streets;Carey Jang .Model Estimate Of Mercury Emission From Natural Sources In East Asia[J].Atmospheric environment,2008(37):8674-8685.
[23] Bash JO;Miller DR;Meyer TH;Bresnahan PA .Northeast United States and Southeast Canada natural mercury emissions estimated with a surface emission model[J].Atmospheric environment,2004(33):5683-5692.
[24] Philip K. Gbor;Deyong Wen;Fan Meng;Fuquan Yang;Baoning Zhang;James J. Sloan .Improved model for mercury emission, transport and deposition[J].Atmospheric environment,2006(5):973-983.
[25] M.S.Gustin;J.A.Ericksen;D.E.Schorran .Application of Controlled Mesocosms for Understanding Mercury Air-Soil-Plant Exchange[J].Environmental Science & Technology: ES&T,2004(22):6044-6050.
[26] Liwei Cui;Xinbin Feng;Che-Jen Lin;Xinming Wang;Bo Meng;Xun Wang;Heng Wang .ACCUMULATION AND TRANSLOCATION OF ~(198)HG IN FOUR CROP SPECIES[J].Environmental Toxicology and Chemistry,2014(2):334-340.
[27] Vincent L. St. Louis;John W. M. Rudd;Carol A. Kelly;Britt D. Hall;Kristofer R. Rolfhus;Karen J. Scott;Steve E. Lindberg;Weijin Dong .Importance of the forest canopy to fluxes of methyl mercury and total mercury to boreal ecosystems[J].Environmental Science & Technology: ES&T,2001(15):3089-3098.
[28] Distribution and trends of mercury in deciduous tree cores[J].Environmental Pollution,2010(6):p.2067.
[29] Runsheng Yin;Xinbin Feng;Bo Meng .Stable Mercury Isotope Variation in Rice Plants (Oryza sativa L) from the Wanshan Mercury Mining District, SW China[J].Environmental Science & Technology: ES&T,2013(5):2238-2245.
[30] Steve Lindberg;Russell Bullock;Ralf Ebinghaus .A Synthesis of Progress and Uncertainties in Attributing the Sources of Mercury in Deposition[J].Ambio: A Journal of the Human Environment,2007(1):19-32.
[31] Scherbatskoy T.;Keeler GJ.;Shanley JB. .Factors controlling mercury transport in an upland forested catchment[J].Water, air and soil pollution,1998(1/2):427-438.
[32] Schwesig D.;Matzner E. .Pools and fluxes of mercury and methylmercury in two forested catchments in Germany[J].Science of the Total Environment,2000(1/3):213-223.
[33] Larssen, T;de Wit, HA;Wiker, M;Halse, K .Mercury budget of a small forested boreal catchment in southeast Norway[J].Science of the Total Environment,2008(2/3):290-296.
[34] Zhangwei Wang;Xiaoshan Zhang;Jingsong Xiao;Ci Zhijia;Pingzhong Yu .Mercury Fluxes And Pools In Three Subtropical Forested Catchments, Southwest China[J].Environmental Pollution,2009(3):801-808.
[35] Elevated atmospheric deposition and dynamics of mercury in a remote upland forest of southwestern China[J].Environmental Pollution,2010(6):p.2324.
[36] D. F. Grigal .Inputs and outputs of mercury from terrestrial watersheds: a review[J].Environmental Reviews,2002(1):1-39.
[37] Grigal D F .Mercury sequestration in forests and peatlands:A review[J].Journal of Environmental Quality,2003,32(2):393-405.
[38] JELENA S. HAETMAN;PETER J. WEISBERG;REKHA PILLAI .Application of a Rule-Based Model to Estimate Mercury Exchange for Three Background Biomes in the Continental United States[J].Environmental Science & Technology: ES&T,2009(13):4989-4994.
[39] Bash J O .Description and initial simulation of a dynamic bidirectional air-surface exchange model for mercury in Community Multiscale Air Quality (CMAQ) model[J].Journal of Geophysical Research-Atmospheres,2010,115
[40] Wang X;Lin C;Feng X.Sensitivity analysis of an updated bidirectional air-surface exchange model for mercury vapor[J].Atmos Chem Phys Discuss,2013(13):32229-32267.
[41] Smith-Downey, N.V.;Sunderland, E.M.;Jacob, D.J. .Anthropogenic impacts on global storage and emissions of mercury from terrestrial soils: Insights from a new global model[J].Journal of Geophysical Research. Biogeosciences,2010(G3):G03008-1-G03008-12.
[42] Futter, M.N.;Poste, A.E.;Butterfield, D.;Dillon, P.J.;Whitehead, P.G.;Dastoor, A.P.;Lean, D.R.S..Using the INCA-Hg model of mercury cycling to simulate total and methyl mercury concentrations in forest streams and catchments[J].Science of the Total Environment,2012:219-231.
[43] Nicolas Estrade;Jean Carignan;Jeroen E. Sonke;Olivier F.X. Donard .Mercury isotope fractionation during liquid–vapor evaporation experiments[J].Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society,2009(10):2693-2711.
[44] Kritee, K;Barkay, T;Blum, JD .Mass dependent stable isotope fractionation of mercury during mer mediated microbial degradation of monomethylmercury[J].Geochimica et Cosmochimica Acta,2009(5):1285-1296.
[45] LYNNE E. GRATZ;GERALD J. KEELER;JOEL D. BLUM .Isotopic Composition and Fractionation of Mercury in Great Lakes Precipitation and Ambient Air[J].Environmental Science & Technology: ES&T,2010(20):7764-7770.
[46] K. KRITEE;JOEL D. BLUM;MARCUS W. JOHNSON;BRIDGET A. BERGQUIST;TAMAR BARKAY .Mercury Stable Isotope Fractionation during Reduction of Hg(II) to Hg(0) by Mercury Resistant Microorganisms[J].Environmental Science & Technology: ES&T,2007(6):1889-1895.
[47] Kritee, K.;Blum, J.D.;Reinfelder, J.R.;Barkay, T..Microbial stable isotope fractionation of mercury: A synthesis of present understanding and future directions[J].Chemical geology,2013:13-25.
[48] Bridget A. Bergquist;Joel D. Blum .Mass-Dependent and -Independent Fractionation of Hg Isotopes by Photoreduction in Aquatic Systems[J].Science,2007(5849):417-420.
[49] Wang Zheng;Holger Hintelmann .Isotope Fractionation of Mercury during Its Photochemical Reduction by Low-Molecular-Weight Organic Compounds[J].The journal of physical chemistry, A. Molecules, spectroscopy, kinetics, environment, & general theory,2010(12):4246-4253.
[50] Wang Zheng;Holger Hintelmann .Nuclear Field Shift Effect in Isotope Fractionation of Mercury during Abiotic Reduction in the Absence of Light[J].The journal of physical chemistry, A. Molecules, spectroscopy, kinetics, environment, & general theory,2010(12):4238-4245.
[51] Ghosh S;Xu Y F;Humayun M.Mass-independent fractionation of mercury isotopes in the environment[J].Geochemistry,Geophysics,Geosystems,2008(9)
[52] Ghosh, S.;Schauble, E.A.;Lacrampe Couloume, G.;Blum, J.D.;Bergquist, B.A..Estimation of nuclear volume dependent fractionation of mercury isotopes in equilibrium liquid-vapor evaporation experiments[J].Chemical geology,2013:5-12.
[53] Chen, J.;Hintelmann, H.;Feng, X.;Dimock, B..Unusual fractionation of both odd and even mercury isotopes in precipitation from Peterborough, ON, Canada[J].Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society,2012:33-46.
[54] XINBIN FENG;DELPHINE FOUCHER;HOLGER HINTELMANN .Tracing Mercury Contamination Sources in Sediments Using Mercury Isotope Compositions[J].Environmental Science & Technology: ES&T,2010(9):3363-3368.
[55] Gretchen E. Gehrke;Joel D. Blum;Darell G. Slotton .Mercury Isotopes Link Mercury in San Francisco Bay Forage Fish to Surface Sediments[J].Environmental Science & Technology: ES&T,2011(4):1264-1270.
[56] Liu, J.;Feng, X.;Yin, R.;Zhu, W.;Li, Z. .Mercury distributions and mercury isotope signatures in sediments of Dongjiang, the Pearl River Delta, China[J].Chemical geology,2011(1/2):81-89.
[57] FENG XinBin,YIN RunSheng,YU Ben,DU BuYun.Mercury isotope variations in surface soils in different contaminated areas in Guizhou Province, China[J].科学通报(英文版),2013(02):249-255.
[58] ABIR BISWAS;JOEL D. BLUM;BRIDGET A. B ERGQUIST .Natural Mercury Isotope Variation in Coal Deposits and Organic Soils[J].Environmental Science & Technology: ES&T,2008(22):8303-8309.
[59] Li Z G;Feng X B;Li G H et al.Mass Balance and Isotope Characteristics of Mercury in Two Coal-fired Power Plants in Guizhou, China[J].Advances in Environmental Science and Engineering,PTS 1-6,2012,518-523:2576-2579.
[60] Jackson, T.A.;Muir, D.C.G..Mass-dependent and mass-independent variations in the isotope composition of mercury in a sediment core from a lake polluted by emissions from the combustion of coal[J].Science of the Total Environment,2012:189-203.
[61] Sonke, J.E. .A global model of mass independent mercury stable isotope fractionation[J].Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society,2011(16):4577-4590.
[62] Demers, J.D.;Blum, J.D.;Zak, D.R. .Mercury isotopes in a forested ecosystem: Implications for air-surface exchange dynamics and the global mercury cycle[J].Global Biogeochemical Cycles,2013(1):222-238.
[63] Zhang H;Yin R S;Feng X B.Atmospheric mercury inputs in montane soils increase with elevation:Evidence from mercury isotope signatures[J].Scientific Reports,2013(3)
[64] 冯新斌,付学吾,SOMMAR Jonas,LIN Jerry,商立海,仇广乐.地表自然过程排汞研究进展及展望[J].生态学杂志,2011(05):845-856.
[65] The influence of dynamic chamber design and operating parameters on calculated surface-to-air mercury fluxes[J].Atmospheric environment,2010(2):194.
[66] Lin C J;Zhu W;Li X et al.Novel dynamic flux chamber for measuring air-surface exchange of Hgo from soils[J].Environmental Science&Technology,2012,46(16):8910-8920.
[67] Sommar, J.;Zhu, W.;Lin, C.-J.;Feng, X. .Field approaches to measure hg exchange between natural surfaces and the atmosphere - A review[J].Critical reviews in environmental science and technology,2013(13/16):1657-1739.
[68] Seasonal variability in gaseous mercury fluxes measured in a high-elevation meadow[J].Atmospheric environment,2010(18):P.2176.
[69] Fritsche J;Wohlfahrt G;Ammann C et al.Summertime elemental mercury exchange of temperate grasslands on an ecosystem-scale[J].Atmospheric Chemistry and Physics,2008,8(24):7709-7722.
[70] Zemmelink H J;Gieskes W W C;Klaassen W.Relaxed eddy accumulation measurements of the sea-to-air transfer of dimethylsulfide over the northeastern Pacific[J].JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS,2004:C1.
[71] Haapanala S;Rinne J;Pystynen K H et al.Measurements of hydrocarbon emissions from a boreal fen using the REA technique[J].BIOGEOSCIENCES,2006,3(1):103-112.
[72] Meyers T P;Luke W T .Fluxes of ammonia and sulfate over maize using relaxed eddy accumulation[J].Agricultural and Forest Meteorology,2006,136:203-213.
[73] Pryor SC;Larsen SE;Sorensen LL;Barthelmie RJ .Particle fluxes above forests: Observations, methodological considerations and method comparisons[J].Environmental Pollution,2008(3):667-678.
[74] Sutton MA;Milford C;Nemitz E;Theobald MR;Hill PW;Fowler D .Biosphere-atmosphere interactions of ammonia with grasslands: Experimentalstrategy and results from a new European initiative[J].Plant and Soil,2001(1):131-145.
[75] Pattey E;Desjardins R L;Westberg H et al.Measurement of isoprene emissions over a black spruce stand using a tower-based relaxed eddy-accumulation system[J].Journal of Applied Meteorology,1999,38(7):870-877.
[76] Cobos DR.;Baker JM.;Nater EA. .Conditional sampling for measuring mercury vapor fluxes[J].Atmospheric environment,2002(27):4309-4321.
[77] Bash J O;Miller D R .A relaxed eddy accumulation system for measuring surface fluxes of total gaseous mercury[J].Journal of Atmospheric and Oceanic Technology,2008,25(2):244-257.
[78] Sommar J;Zhu W;Shang L et al.A whole-air relaxed eddy accumulation measurement system for sampling vertical vapor exchange of elemental mercury[J].TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY,2013,65:19940.
[79] Wei Zhu;Jonas Sommar;Zhonggen Li;Xinbin Feng;Che-Jen Lin;Guanghui Li .Highly elevated emission of mercury vapor due to the spontaneous combustion of refuse in a landfill[J].Atmospheric environment,2013(Nov.):540-545.
[80] Xuewu Fu;Lars-Eric Heimburger;Jeroen E. Sonke .Collection of atmospheric gaseous mercury for stable isotope analysis using iodine-and chlorine-impregnated activated carbon traps[J].Journal of Analytical Atomic Spectrometry,2014(5):841-852.
[81] Jiubin Chen;Holger Hintelmann;Brian Dimock .Chromatographic pre-concentration of Hg from dilute aqueous solutions for isotopic measurement by MC-ICP-MS[J].Journal of Analytical Atomic Spectrometry,2010(9):1402-1409.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%