欢迎登录材料期刊网

材料期刊网

高级检索

同步辐射是具有连续光谱宽波段、高通量、低发散度等优点的先进脉冲X射线光源,可用于开展其它光源无法实现的诸多前沿科学研究.第三代同步辐射光源产生的高能X射线,能大幅提高衍射的倒易空间分辨率、穿透深度及时间分辨能力,实现使役条件下工程材料与部件内部多尺度微结构单元的高效原位、精确无损表征.配备满足透射几何条件、能施加多种力物性环境的原位装置,有助于建立多场耦合下材料的跨尺度力学模型.简述了同步辐射高能X射线衍射的基本原理、第三代同步辐射光源的装置与特点,介绍了高能X射线衍射在材料形变行为、相变以及再结晶等领域的研究进展.最后基于国内外先进光源的发展现状,展望了同步辐射高能X射线衍射技术进步的主要方向.

Synchrotron radiation is pulsed radiation generated by bunches of charged particles with relativistic energies.Due to high intensity,high spatial/time resolution and high penetration depth,the synchrotron-based high-energy X-ray diffraction (HE-XRD) technique can be used to characterize the evolution of the multi-scale microstructures in engineering materials.By applicating the in-situ experimental instrument,the HE-XRD provides rich information on experimental inputs for establishing various micro-mechanical models of engineering materials under interaction of multiple external stress,temperature,and/or magnetic fields.Moreover,HE-XRD provides also powerful tools for revealing the damage and failure mechanisms of advanced materials and evaluating performance of engineering components during usage.In this paper,the basic principles of synchrotron radiation and HE-XRD are briefly introduced and their applications to deformation,phase transformation and recrystallization are presented,including the micromechanical behavior and microstructure evolution of advanced multiphase materials with high strength,the influence of external fields on the phase transformation behaviors of thermal and ferromagnetic shape-memory alloys and nanowire-reinforced shape-memory composites,etc.Finally,based on the further development of advanced photon sources,the future applications of HE-XRD technology in higher time resolution and multiple actual environment are prospected.

参考文献

上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%