欢迎登录材料期刊网

材料期刊网

高级检索

非晶合金熔体的扩散是描述非晶合金熔体动力学行为的重要参数,不同于一般的金属熔体,非晶合金熔体的扩散行为具有自己独特的性质,如表现出典型的慢扩散和复杂的温度依赖关系等。由于技术、理论上的原因,目前无论是国内还是国际上,对非晶合金熔体扩散的研究尚处于不成熟的阶段。主要介绍了扩散系数的几种比较可行的测量方法,其中包括最近本课题组在传统长管法和切单元法基础上开发的滑动剪切技术,该技术能够有效消除加热阶段的扩散,是熔体扩散系数测量的方法的一项进步。同时,基于前人的测量技术和理论模型,对非晶合金熔体的扩散研究进行了系统的总结和讨论。目前能较好地描述一般熔体原子扩散的模型:Arrhenius关系、VFT方程、Tn 关系、Darken公式及S-E 关系,在非晶合金熔体中都表现出很大的局限性。尽管MCT理论能预言熔体原子扩散的动力学行为,且得到了实验证实,但是其自身亦存在一些难以克服的问题。

Diffusion in amorphous alloy melts is an important kinetic parameter to describe the properties in melts.Dif-ferent from the normal alloy melts,the diffusion behavior of amorphous alloy melts tend to have their own unique proper-ties,such as representing a typical slow diffusivity and a complex temperature dependent.But the researches on atomic diffusion are still at a preliminary stage whether in domestic or international study due to technical and theoretical difficul-ties.This paper mainly introduced some measurement techniques of the diffusion coefficient,including our self-designed sliding cell method,which combined the merits of the traditional long capillary method and the shear cell method,and ruled out the undesired atomic diffuse occuring in heating process.It’s concerned as an effective way to measure the diffu-sion coefficient.In addition,based on the diffusion results and models of the amorphous alloy melts,the diffusion research in amorphous alloy melts were summarized and discussed.As some good models to describe the diffusion behavior of the simple liquids,Arrhenius relationship,VFT function,Tn relationship,Darken equation and S-E relationship show a lot of limitations in amorphous alloy melts.At the same time,although MCT theory can predict the dynamics of glass forming liquids,which were confirmed by experiments and simulations,it also have some issues that are difficult to overcome.

参考文献

[1] Klement W;Willens R H;Duwez P O L .Non-Crystalline Struc-ture in Solidified Gold-Silicon Alloys[J].NATURE,1960,187:869-870.
[2] Wang WH;Dong C;Shek CH .Bulk metallic glasses[J].Materials Science & Engineering, R. Reports: A Review Journal,2004(2/3):45-89.
[3] Suryanarayana C;Inoue A.Bulk Metallic Glasses[M].United States:Taylor&Francis,2011
[4] Volker Zoellmer;Klaus Raetzke;Franz Faupel .Diffusion and isotope effect in bulk-metallic glass-forming Pd-Cu-Ni-P alloys from the glass to the equilibrium melt[J].Journal of Materials Research,2003(11):2688-2696.
[5] Meyer A.;Schober H.;Busch R. .Time-temperature superposition of structural relaxation in a viscous metallic liquid[J].Physical review letters,1999(24):5027-5029.
[6] A. GRIESCHE;M. -P. MACHT;G. FROHBERG .Chemical Diffusion in Bulk Glass-Forming Pd_(40)Cu_(30)Ni_(10)P_(20) Melts[J].Scripta materialia,2005(12):1395-1400.
[7] A. Griesche;M.-P. Macht;G. Frohberg .Diffusion in Metallic Melts[J].Diffusion and Defect Data. Solid State Data, Part A. Defect and Diffusion Forum,2007(0):101-108.
[8] Nachtrieb N H .Atomic Transport Properties in Liquid Metals and Alloys[J].Berichte der Bunsengesellschaft für Physikalische Che-mie,1976,80(08):678-688.
[9] Iida T;Guthrie R I L.The Physical Properties ofLiquid Metals[M].New York:Oxford University Press,1988
[10] Mathiak G;Griesche A;Kraatz K H et al.Diffusion in liquid metals[J].Journal ofNon-Crystalline Solids,1996,205:412-416.
[11] Griesche A;Macht MP;Garandet JP;Frohberg G .Diffusion and viscosity in molten Pd40Ni40P20 and Pd40Cu30Ni10P20 alloys[J].Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites,2004(3):173-178.
[12] Tadahiko Masaki;Tomoharu Fukazawa;Satoshi Matsumoto .Measurements of diffusion coefficients of metallic melt under microgravity - current status of the development of shear cell technique towards JEM on ISS[J].Measurement Science & Technology,2005(2):327-335.
[13] Diffusion in Al-Cu Melts Studied by Time-Resolved X-Ray Radiography[J].Physical review letters,2010(3):035902.1.
[14] Meyer A. .Atomic transport in dense multicomponent metallic liquids - art. no. 134205[J].Physical Review.B.Condensed Matter,2002(13):4205-0.
[15] Raluca Rosu-Pflumm;Wolfgang Wendl;German Muller-Vogt;Shinsuke Suzuki;K.-H. Kraatz;G. Frohberg .Diffusion measurements using the shear cell technique: Investigation of the role of Marangoni convection by pre-flight experiments on the ground and during the Foton M2 mission[J].International Journal of Heat and Mass Transfer,2009(25/26):6042-6049.
[16] John Cahoon;Yuning Jiao;Kedar Tandon .Interdiffusion in liquid tin[J].Journal of Phase Equilibria and Diffusion,2006(4):325-332.
[17] Geng Y L;Zhu C A;Zhang B .A Sliding Cell Technique for Diffusion Measurements in Liquid Metals[J].AIP Advances,2014,4(03):7102.
[18] Masaki T;Fukazawa T;Watanabe Y;Kaneko M;Yoda S;Itami T .Measurement of diffusion coefficients of Au in liquid Ag with the shear cell technique[J].Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites,2007(32/40):3290-3294.
[19] Squires G L.Introduction to the Theory ofThermal Neutron Scat-tering[M].New York:Cambridge University Press,2012
[20] Furrer A;Mesot J;Strssle T.Neutron Scattering in Con-densed Matter Physics[M].Singapore:World Scientific,2009
[21] F. Demmel;D. Szubrin;W.-C. Pilgrim;C. Morkel .Diffusion in liquid aluminium probed by quasielastic neutron scattering[J].Physical review, B. Condensed matter and materials physics,2011(1):014307:1-014307:4.
[22] Meyer A;Stuber S;Holland-Moritz D;Heinen O;Unruh T .Determination of self-diffusion coefficients by quasielastic neutron scattering measurements of levitated Ni droplets[J].Physical review, B. Condensed matter and materials physics,2008(9):092201-1-092201-4-0.
[23] A. Meyer .Self-diffusion in liquid copper as seen by quasielastic neutron scattering[J].Physical review, B. Condensed matter and materials physics,2010(1):012102:1-012102:3.
[24] Nachtrieb N H .Self-Diffusion in Liquid Metals[J].ADVANCES IN PHYSICS,1967,16(62):309-323.
[25] S. M. Chathoth;B. Damaschke;J. P. Embs;K. Samwer .Giant changes in atomic dynamics on microalloying metallic melt[J].Applied physics letters,2009(19):191907-1-191907-3.
[26] Chathoth S M;Koza M M;Meyer A .Complex Atomic Dynam-ics in a Deep-Eutectic Binary Metallic Melt[J].Materials Chemistry and Physics,2012,136:296-299.
[27] Hecksher T;Nielsen AI;Olsen NB;Dyre JC .Little evidence for dynamic divergences in ultraviscous molecular liquids[J].Nature physics,2008(9):737-741.
[28] Rault J. .Origin of the Vogel-Fulcher-Tammann law in glass-forming materials: the alpha-beta bifurcation [Review][J].Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites,2000(3):177-217.
[29] Sow-Hsin Chen;Francesco Mallamace;Chung-Yuan Mou;Matteo Broccio;Carmelo Corsaro;Antonio Faraone;Li Liu .The violation of the Stokes-Einstein relation in supercooled water[J].Proceedings of the National Academy of Sciences of the United States of America,2006(35):12974-12978.
[30] Han, XJ;Teichler, H .Liquid-to-glass transition in bulk glass-forming Cu60Ti20Zr20 alloy by molecular dynamics simulations[J].Physical review. E, Statistical, nonlinear, and soft matter physics,2007(6part1):1501-1-1501-15-0.
[31] J. Brillo;A. I. Pommrich;A. Meyer .Relation between Self-Diffusion and Viscosity in Dense Liquids: New Experimental Results from Electrostatic Levitation[J].Physical review letters,2011(16):165902.1-165902.4.
[32] Shewmon P G.Diffusion in Solids[M].New York:McGraw-Hill,1963
[33] Manning J R .Diffusion in a Chemical Concentration Gradient[J].Physical Review,1961,124(02):470-482.
[34] Stokes G G .On the Effect of Internal Friction of Fluids on the Motion of Pendulums[J].Transactions ofthe Cambridge Philo-sophical Society,1851,9:8-106.
[35] Einstein A.Investigations on the Theory ofthe Brownian Move-ment[M].New York:Dover Publications Inc,1956
[36] Sutherland W LXXV .A Dynamical Theory of Diffusion for Non-Electrolytes and the Molecular Mass of Albumin[J].The Lon-don Edinburgh and Dublin Philosophical Magazine and Jour-nal ofScience,1905,9(54):781-785.
[37] Medina, I..Determination of diffusion coefficients for supercritical fluids[J].Journal of chromatography, A: Including electrophoresis and other separation methods,2012:124-140.
[38] Cappelezzo M;Capellari CA;Pezzin SH;Coelho LAF .Stokes-Einstein relation for pure simple fluids[J].The Journal of Chemical Physics,2007(22):24516-1-24516-5-0.
[39] Rah K.;Eu BC. .Relation of sheer viscosity and self-diffusion coefficient for simple liquids[J].Physical review.E.Statistical physics, plasmas, fluids, and related interdisciplinary topics,1999(4 Pt.a):4105-4116.
[40] Baidakov, V.G.;Protsenko, S.P.;Kozlova, Z.R. .Metastable Lennard-Jones fluids. I. Shear viscosity[J].The Journal of Chemical Physics,2012(16):164507-1-164507-10.
[41] A. Meyer;W. Petry;M. Koza;M.-P. Macht .Fast diffusion in ZrTiCuNiBe melts[J].Applied physics letters,2003(19):3894-3896.
[42] J. Brillo;S. M. Chathoth;M. M. Koza;A. Meyer .Liquid Al_(80)Cu_(20): Atomic diffusion and viscosity[J].Applied physics letters,2008(12):121905-1-121905-3-0.
[43] S. M. Chathoth;K. Samwer .Stokes-Einstein relation in dense metallic glass-forming melts[J].Applied physics letters,2010(22):221910-1-221910-3.
[44] Becker SR;Poole PH;Starr FW .Fractional Stokes-Einstein and Debye-Stokes-Einstein relations in a network-forming liquid[J].Physical review letters,2006(5):5901-1-5901-4-0.
[45] Xu, LM;Mallamace, F;Yan, ZY;Starr, FW;Buldyrev, SV;Stanley, HE .Appearance of a fractional Stokes-Einstein relation in water and a structural interpretation of its onset[J].Nature physics,2009(8):565-569.
[46] Reichman D R;Charbonneau P.Mode-Coupling Theory[J].Journal ofStatistical Mechanics:Theory and Experiment,2005(O5):105013.
[47] Gtze W.Complex Dynamics of Glass-Forming Liquids:A Mode-Coupling Theory[M].USA:Oxford University Press,2009
[48] Yang, F.;Kordel, T.;Holland-Moritz, D.;Unruh, T.;Meyer, A. .Structural relaxation as seen by quasielastic neutron scattering on viscous Zr-Ti-Cu-Ni-Be droplets[J].Journal of Physics. Condensed Matter,2011(25):254207-1-254207-6.
[49] Meyer A.;Petry W.;Randl OG.;Schober H.;Wuttke J. .Slow motion in a metallic liquid[J].Physical review letters,1998(20):4454-4457.
[50] S. Mavila Chathoth;A. Meyer;M. M. Koza;F. Juranyi .Atomic diffusion in liquid Ni, NiP, PdNiP, and PdNiCuP alloys[J].Applied physics letters,2004(21):4881-4883.
[51] Chathoth SM;Podlesnyak A .Fast and slow dynamics in Pr60Ni10Cu20Al10 melts as seen by neutron scattering[J].Journal of Applied Physics,2008(1):13509-1-13509-4-0.
[52] S. M. Chathoth;B. Damaschke;J. P. Embs;K. Samwer .Dynamics in Cu_(46)Zr_(42)Al_(7)Y_(5) melts: Interplay between packing density and viscosity[J].Applied Physics Letters,2009(20):201906-1-201906-3-0.
[53] Faupel F.;Frank W.;Macht MP.;Mehrer H.;Naundorf V.;Ratzke K.;Schober HR.;Sharma SK.;Teichler H. .Diffusion in metallic glasses and supercooled melts [Review][J].Reviews of Modern Physics,2003(1):237-280.
[54] A. Griesche;K. H. Kraatz;G. Frohberg .A modified shear cell for mass transport measurements in melts[J].Review of Scientific Instruments,1998(1):315-316.
[55] Meyer A;Kargl F .Diffusion of Mass in Liquid Metals and Al-loys-Recent Experimental Developments and New Perspectives[J].International Journal ofMicrogravity Science and Applica-tion,2013,30(01):30-35.
[56] Lin Z;Youshi W;Xiufang B et al.Origin of the Prepeak in the Structure Factors of Liquid and Amorphous Al-Fe-Ce Alloys[J].Journal ofPhysics:Condensed Matter,1999,11(41):7959-7969.
[57] March, NH;Alonso, JA .Properties of glass-forming metallic liquids: when is there a hard-sphere-like behaviour?[J].Physics and Chemistry of Liquids,2009(6):585-598.
[58] Das SK;Horbach J;Koza MM;Chatoth SM;Meyer A .Influence of chemical short-range order on atomic diffusion in Al-Ni melts[J].Applied physics letters,2005(1):1918-1-1918-3-0.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%