本文首次利用神经网络对Cu-Cr-Zr合金时效温度和时间与硬度和导电率样本集进行学习,采用改进的BP网络算法--Levenberg-Marquardt算法,建立了时效强化工艺BP神经网络模型.预测结果表明:该BP神经网络可以充分挖掘样本蕴含的领域知识,可以对材料性能进行有效预测和分析.
参考文献
[1] | HO J. RYU;HYUNG K. BAIK;SOON H. HONG .Effect of thermomechanical treatments on microstructure and properties of Cu-base leadframe alloy[J].Journal of Materials Science,2000(14):3641-3646. |
[2] | Naotsugu I .Behavor of precipitation and recrystallization affect upon texture of Cu-Cr-Zr alloy[J].Journal of the Japan Copper and Brass Regearch Association,1993,32:115-121. |
[3] | H. I. Choi;K. Y. Lee;S. I. Kwun .Fabrication of high strength and high conductivity copper alloys by rod milling[J].Journal of Materials Science Letters,1997(19):1600-1602. |
[4] | 刘延利,钟群鹏,张峥 |
[5] | L Rawtani .Modeling of material behavior data in a functional form suitable for neural network representation[J].Computational Materials Science,1999,15:493-502. |
[6] | 樊宁,艾兴,邓建新.利用人工神经网络预测复相陶瓷材料组分含量的研究[J].硅酸盐学报,2001(06):569-575. |
[7] | Le-Hua Qi;Jun-Jie Hou;Pei-Ling Cui;He-Jun Li .Research on prediction of the processing parameters of liquid extrusion by BP network[J].Journal of Materials Processing Technology,1999(1/3):232-237. |
[8] | Joines JA;White M W.Improved Generalization Using Robust Cost Functions[A].New York IEEE Press,1992:911-918. |
[9] | 张智星;孙春在;水谷英二.神经--模型和软计算[M].西安:西安交通大学出版社,1998:156-215. |
[10] | 王文成.神经网络及其在汽车工程中的应用[M].北京:北京理工大学出版社,1998:261-262. |
[11] | I. A. Basheer;M. Hajmeer .Artifical neural networks: fundamentals, computing, design, and application[J].Journal of Microbiological Methods,2000(1):3-31. |
[12] | J.B.Correia;H.A.Davies;C.M.SELLARS .STRENGTHENING IN RAPIDLY SOLIDIFIED AGE HARDENED Cu-Cr AND Cu-CU-Zr ALLOYS[J].Acta materialia,1997(1):177-190. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%