欢迎登录材料期刊网

材料期刊网

高级检索

理论上建立了平顶光束在单晶和孪晶中传播的物理模型,并给出了平顶光束在各向异性介质中传播时的倍频耦合波方程,进而对其进行数值求解;最后对求解所得到的谐波能流分布、总输出能量和入射光角谱进行了分析讨论,并从束腰大小、晶体结构对倍频的影响等方面给出了合理解释.研究结果表明:当束腰相同时,孪晶倍频能流强度要高于单晶;同一种晶体,窄束腰对应倍频强度更高,然而窄束腰光束在单晶中传播时容易发生光束分裂,但孪晶可以改善这种光束分裂情况.

参考文献

[1] Arie A;Voloch N.Periodic,quasi-periodic,and random quadratic nonlinear photonic crystals[J].Laser and Photonics Reviews,20104(3):355-373.
[2] Suchowski Haim;Prabhudesai Vaibhav.Robust adiabatic sum frequency conversion[J].Opt Expr,200917(15):12731-12740.
[3] 徐军;王燕;庞宛文;刘志坤;白丽华;张惠芳.采用蒸发法实现KDP单晶柱面扩展[J].量子电子学报,2012(3):353-356.
[4] Chen, X.;Nadiarynkh, O.;Plotnikov, S.;Campagnola, P.J..Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure[J].Nature protocols erecipes for researchers,20124(4):654-669.
[5] Campagnola P J;Dong C Y.Second harmonic generation microscopy:Principles and applications to disease diagnosis[J].Laser and Photon Rev,20115:13-26.
[6] Sheng Yah;Ma Dongli.Broadband second harmonic generation in one-dimensional randomized nonlinear photonic crystal[J].Applied Physics Letters,201199:031108.
[7] Shealy DL;Hoffnagle JA.Laser beam shaping profiles and propagation[J].Applied optics,200621(21):5118-5131.
[8] Eyyuboglu H T;Arpali C.Flat topped beams and their characteristics in turbulent media[J].Opt Expr,200614:4196-4207.
[9] Zhang Yong;Fluegel B.Total and negative refraction in real crystals for ballistic electrons and light[J].Physical Review Letters,200391(15):1574041-1574044.
[10] Zheng Liu;Zhifang Lin;S. T. Chui.Negative refraction and omnidirectional total transmission at a planar interface associated with a uniaxial medium[J].Physical Review.B.Condensed Matter,200411(11):115402.1-115402.6.
[11] Gori F.Flattened Ganssian beams[J].Optics communication,1994107:335-341.
[12] Jin Au Kong;Bae-Ian Wu;Yan Zhang.Lateral displacement of a Gaussian beam reflected from a grounded slab with negative permittivity and permeability[J].Applied physics letters,200212(12):2084-2086.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%