欢迎登录材料期刊网

材料期刊网

高级检索

应用Painlevé分析法研究了广义变系数Burgers-Kadomtsev-Pet viashvili (BKP)方程.结果显示该方程不具有Painlevé性质.通过截断Painlevé展开方法,在条件f(t)=c9(t)(c为任意常数)下,得到了该方程的自B(a)cklund变换.基于自B(a)cklund变换,给出了一些新的解析解如多孤子解和周期解.

参考文献

[1] Gardner C S;Greene J M;Kruskal M D.Method for solving the Korteweg-de Vries equation[J].Physical Review Letters,196719:1095-1097.
[2] Ablowitz M J;Segur H.Solitons and the Inverse Scattering Transformation[M].Philadelphia SIAM,PA,1981
[3] Matsuno Y.Bilinear Transformation Method[M].London:Academic Press Inc,1984
[4] Rogers C;Schief W K.B(a)cklund and Darboux Transformations:Geometry and Modern Applications in Soliton Theory[M].Cambridge:Cambridge University Press,2002
[5] Gu C H;Hu H S;Zhou z X.孤立子理论中的达布变型及其几何应用[M].Shanghai:Shanghai Scientific Technical Publishers,1999
[6] Wang X;Chen Y.Darboux transformations and N-soliton solutions of two (2+1)-dimensional nonlinear equations[J].Communications In Theoretical Physics,201461:423-430.
[7] Hirota R.Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons[J].Physical Review Letters,197127:1192-1194.
[8] Hirota R.The Direct Method in Soliton Theory[M].Cambridge:Cambridge University Press,2004
[9] Hu X B;Wang H Y.New type of Kadomtsev-Petviashvili equation with self-consistent sources and its bilinear B(a)cklund transformation[J].Inverse Problems,200723:1433-1444.
[10] Xu X G;Meng X H.Integrable properties for a generalized non-isospectral and variable-coefficient Korteweg-de Veris model[J].MODERN PHYSICS LETTERS B,201024:1023-1032.
[11] Wang M L;Zhou Y B.Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics[J].Physics Letters A,1996216:67-75.
[12] Lou S Y;Tang X Y.非线性数学物理方法[M].Beijing:Scientific Publishers,2006
[13] Liang Y Q;Wei G M;Li X N.New variable separation solutions and nonlinear phenomena for the (2+1)-dimensional modified Korteweg-de Vries equation[J].Communications in Nonlinear Science and Numerical Simulation,201116:603-609.
[14] Xu G Q.A note on the Painlevé test for the nonlinear variable-coefficient PDEs[J].Computer Physics Communications,2009180:1137-1144.
[15] Wei G M;Gao Y T;Meng X H.Painlevé property and new analytic solutions for a variable-coefficient Kadomtsev-Petviashvili equation with symbolic computation[J].Chinese Physics Letters,200825:1599-1602.
[16] Wang L;Xian D Q.Homoclinic breather-wave solutions,periodic-wave solutions and kink solitary-wave solutions for CDGKS equations[J].量子电子学报,201229:417-420.
[17] Wang Z L;Liu X Q.Symmetry reduction and exact solutions of generalized fourth-order dispersive equation[J].量子电子学报,201431:264-272.
[18] Wazwaz A M.Multiple-front solutions for the Burgers-Kadomtsev-Petviashvili equation[J].Applied Mathematics and Computation,2008200:437-443.
[19] Taghizadeh N;Mirzazadeh M;Farahrooz F.Exact solutions of the modified KdV-KP equation and the Burgers-KP equation by using the first integral method[J].Applied Mathematical Modeling,201135:3991-3997.
[20] Xu B.New solutions of the generalized Burgers-KP equation[J].聊城大学学报(自然科学版,200922:09-12.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%