欢迎登录材料期刊网

材料期刊网

高级检索

应用推广的简单方程方法成功构造了Whit ham-Broer-Kaup-Like方程组新的精确行波解.这些行波解分别以含有双参数的双曲函数,三角函数和有理函数表示.当双曲函数表示的行波解中参数取特殊值时可得孤波解.得到的结果说明了推广的简单方程方法是直接、可靠和行之有效的,并且该方法也可用于求解数学物理中其它非线性发展方程的更多精确行波解.

参考文献

[1] Fan E G,Hon Y C.Applications of extended tanh method to special types of nonlinear equations[J].Appl.Math.Comput.,2003,141:351-358.
[2] Wang M L,Zhou Y B,Li Z B.Applications of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics[J].Phys.Lett.A,1996,216:67-75.
[3] Liu S K,Fu Z T,Liu S D,et al.Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations[J].Phys.Lett.A,2001,289:69-74.
[4] Zhang J L,Wang M L,Li X Z.The subsidiary ordinary differential equations and the exact solutions of the higher order dispersive nonlinear Schrǒdinger equation[J].Phys.Lett.A,2006,357:188-195.
[5] Wang M L,Li X Z.Applications of F-expansion to periodic wave solutions for a new Hamiltonian amplitude equation[J].Chaos,Solitons and Fractals,2005,24:1257-1268.
[6] Wazwaz A M.A sine-cosine method for handling nonlinear wave equations[J].Math.Comput.Modelling,2004,40(5-6):499-508.
[7] Wazwaz A M.Generalized solitonary and periodic solutions for nonlinear partial differential equations by the Exp-function method[J].Nonlinear Dyn.,2008,52:1-9.
[8] Yan Z Y.Generalized method and its application in the higher-order nonlinear Schrǒdinger equation in nonlinear optical fibres[J].Chaos,Solitons and Fractals,2003,16:759-766.
[9] Kudryashov N A.Simplest equation method to look for exact solutions of nonlinear differential equations[J].Chaos,Solitons and Fractals,2005,24:1217-1231.
[10] Kudryashov N A.Exact solitary waves of the Fisher equation[J].Phys.Lett.A,2005,342:99-106.
[11] Wang M L,Li X Z,Zhang J L.The(G'/G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematicai physics[J].Phys.Lett.A,2008,372:417-423.
[12] Yang L J,Yang Q F,Du X Y.New exact solutions of Broer-Kaup-Kupershmidt equation[J].Chinese Journal of Quantum Electronics(量子电子学报),2011,29(2):142-146(in Chinese).
[13] Li N,Liu X Q.New explicit solutions of generalized(3+1)-dimensional higher-order Kadomtsov-Petviashivilli equation[J].Chinese Journal of Quantum Electronics(量子电子学报),2013,30(4):391-397(in Chinese).
[14] Sun Y Z,Wang Z L,Wang G W,Liu X Q.Soliton solutions for generalized fifth-order KdV and BBM equations with varible coefficients[J].Chinese Journal of Quantum Electronics(量子电子学报),2013,30(4):398-404(inChinese).
[15] Sudao Bilige,Temuer Chaolu.An extended simplest equation method and its application to several forms of the fifth-order KdV equation[J].Appl.Math.Comput.,2010,216:3146-3153.
[16] Sudao Bilige,Temuer Chaolu,Wang Xiaomin.Application of the extended simplest equation method to the coupled Schrǒdinger-Boussinesq equation[J].Appl.Math.Comput.,2013,224:517-523.
[17] Zhou Y B,Li C.Application of modified(G'/G)-expansion method to traveling wave solutions for WhithamBroer-Kaup-Like equations[J].Commun.Theor.Phys.,2009,51(1):664-670.
[18] Guo S M,Zhou Y B.The extended(G'/G)-expansion method and its applications to the Whitham-Broer-Kaup-Like equations and coupled Hirota-Satsuma KdV equations[J].Appl.Math.Comput.,2010,215:3214-3221.
[19] Zhang P.New exact solutions to breaking soliton equations and Whitham-Broer-Kaup equations[J].Appl.Math.Comput.,2010,216(4):1688-1696.
[20] Broer L J F.Approximate equations for long water waves[J].Applied Scientific Research,1975,31(5):377-395.
[21] Abdou M A.The extended tanh method and its applications for solving nonlinear physical models[J].Appl.Math.Comput.,2007,190:988-996.
[22] Tan F G.New exact traveling wave solutions of Whitham-broer-Kaup-Like equation[J].Journal of Inner Mongolia University(Natural Science Edition)(内蒙古大学学报(自然科学版)),2011,42(2):133-140(in Chinese).
[23] Tan F G,Sudao Bilige.More general exact solutions of Whitham-Broer-Kaup-Like equation[J].Journal of Inner Mongolia University(Natural Science Edition)(内蒙古大学学报(自然科学版)),2011,42(3):258-264(in Chinese).
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%