基于隐形传态提出一种稳定子码量子容错编码门的构造方法.隐形传态构造法是通过对隐形传递得到的编码态执行假想的编码门,然后将该假想门往前移,使得编码门构造的困难减小到仅容错制备一个特殊辅助态即可.以编码Hadamard门,编码相位门为例详述了该方法的实现过程,并通过数值分析验证了隐形传态构造法的正确性.最后,计算各编码门的构造开销,并与文献[16]中的编码门构造方法相比较,结果表明隐形传态法下,编码(H-)门的物理量子门减少了60n个,辅助块|(0-)>和|Cat>各减少了5个;编码(P-)门的物理量子门减少了16n个,辅助块|(0-)>减少了1个,|Cat>减少了2个.
参考文献
[1] | Deutsch D.Quantum computational networks[C].Proceedings of the Royal Society A,1989,425:73-90. |
[2] | Shor P W.Fault-tolerant quantum computation[C].Proceedings of the 37th Symposium on Fundamentals of Computer Science,Los Alamitos,1996,56-65. |
[3] | Preskill J.Reliable quantum computers[C].Proceedings of the Royal Society A,1998,454:385-410. |
[4] | Knill E.Quantum computing with very noisy devices[J].Nature,2004,434:39-44. |
[5] | Gottesman D.An introduction to quantum error correction and fault-tolerant quantum computation[C].Proceedings of Symposia in Applied Mathematics,2010,68:24-70. |
[6] | Li Y,Barrett S D,Stace T M,et al.Fault-tolerant quantum computation with nondeterministic gates[J].Phys.Rev.Lett.,2010,105:250502. |
[7] | Fujii K,et al.Fault-tolerant topological one-way quantum computation with probabilistic two-qubit gates[J].Phys.Rev.Lett.,2010,105:250503. |
[8] | Chow J M,Gambetta J M,Corcoles A D,et al.Complete universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits[J].Phys.Rev.Lett.,2012,109:060501. |
[9] | Su xiaoqin,Guo guangcan.Quantum communications and quantum computation[J].Chinese Journal of Quantum Electronics(量子电子学报),2004,21(6):6-13 (in Chinese). |
[10] | Li Chengzu,Chen Pingxing,et al.Research on Quantum Computer (Rudin)-Correcting and Fault-Tolerant Computation[M].Beijing:Science Press,2011:467-471. |
[11] | Lü Hongjun,Wu Tianhao,Peng Fei,et al.Research on the quantum reversible logic circuits with compound method[J],Chinese Journal of Quantum Electronics(量子电子学报),2010,27(2):174-179(in Chinese). |
[12] | Lü Hongjun,Guo Junwang,Peng Fei,et al.n-bit quantum gate accomplished by two-bit quantum gates[J].Chinese Journal of Quantum Electronics(量子电子学报),2010,27(1):26-30 (in Chinese). |
[13] | Bravyi S,Kitaev A.Universal quantum computation with ideal Clifford gates and noisy ancillas[J].Phys.Rev.A,2005,71:022316. |
[14] | Eastin B,Knill E.Restriction on transversal encoded quantum gate sets[J].Phys.Rev.Lett.,2009,102:110502. |
[15] | Zeng B,Cross A,Chuang I L.Transversality versus universality for additive quantum codes[J].IEEE Trans.Inform.Theory,2011,57:6272-6284. |
[16] | Gottesman D.A theory of fault-tolerant quantum computation[J].Physical Review A,1998,57:127-137. |
[17] | Zha Xinwei.Two schemes of teleporting an arbitrary four-particle entangled state[J].Chinese Journal of Quantum Electronics(量子电子学报),2008,25(2):186-190 (in Chinese). |
[18] | Gottesman D,Chuang I L.Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations[J].Nature,1999,402:390-393. |
[19] | Gottesman D,Chuang I L.Quantum teleportation is a universal computational primitive[J].Phys.Rev.Lett.,1999,101:240501. |
[20] | Zhou X L,Debbie W L,Chuang I L.Methodology for quantum logic gate construction[J].Phys.Rev.A,2000,62:052316. |
[21] | Stean A M,Ibinson B.Fault-tolerant logical gate networks for CSS codes[J].Phys.Rev.A,2005,62:052316. |
[22] | Goebel A,Wagenknecht C,Zhang Q,et al.Teleportation-based controlled-not gate for fault-tolerant quantum computation[OL].2010,http://arxiv.org/abs/0809.3583. |
[23] | Steane A M.Overhead and noise threshold of fault-tolerant quantum error correction[J].Phys.Rev.A,2003,68:042322. |
[24] | Paetznick A,Reichardt B W.Fault-tolerant ancilla preparation and noise threshold lower bounds for the 23-qubit Golay code[OL].2011,http://arxiv.org/abs/1106.2190v1. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%