欢迎登录材料期刊网

材料期刊网

高级检索

应用非线性自伴随性的概念和伊布拉基莫夫的一般守恒律定理,研究了带强迫KdV方程的非线性自伴随性和守恒律.首先讨论了自伴随性,结果表明这个方程具有非线性自伴随性,同时得到了这个方程的形式拉格朗日量.在对此方程进行李对称分析后,根据李对称的不同得到了此方程的一些非平凡守恒律.

参考文献

[1] Bluman G W,Kumei S.Symmetries and Differential Equations[M].New York:Springer,1989.
[2] Bluman G W,Cheviakov A F,Anco S C.Applications of Symmetry Methods to Partial Differential Equations[M].New York:Springer,2010.
[3] Benjamin T B.The stability of solitary waves[J].Proc.Roy.Soc.London A,1972,328:153-183.
[4] Noether E.Invariante variations probleme[J].Nachr.Konig.Gesell.Wissen.,Gottingen,Math.-Phys.K1.Heft,1918,2:235-257.
[5] Olver P J.Application of Lie Groups to Differential Equations[M].New York:Springer,1993.
[6] Anco S C,Bluman G W.Direct construction method for conservation laws of partial differential equations,Part Ⅰ:Examples of conservation laws classifications[J].Eur.J.Appl.Math.,2002,13:545-566.
[7] Kara A H,Mahomed F M.Noether-type symmetries and conservation laws via partial Lagrangians[J].Nonlinear Dynam.,2006,45:367-383.
[8] Ibragimov N H.A new conservation theorem[J].J.Math.Anal.Appl.,2007,333:311-328.
[9] Ibragimov N H.Integrating factors,adjoint equations and Lagrangians[J].J.Math.Anal.Appl.,2006,318:742-757.
[10] Ibragimov N H.Quasi-self-adjoint differential equations[J].Arch.ALGA.,2007,4:55-60.
[11] Ibragimov N H,Torrisi M,Tracina R.Quasi self-adjoint nonlinear wave equations[J].J.Phys.A:Math.Theor.,2011,43:442001.
[12] Gandarias M L.Weak self-adjoint differential equations[J].J.Phys.A:Math.Theor.,2011,44:262001.
[13] Ibragimov N H,Torrisi M,et al.Self-adjointness and conservation laws of a generalized Burgers equation[J].J.Phys.A:Math.Theor.,2011,44:145201.
[14] Bruzon M S,Gandarias M L,Ibragimov N H.Self-adjoint sub-classes of generalized thin film equations[J].J.Math.Anal.Appl.,2009,357:307-313.
[15] Gandarias M L,Redondo M,Bruzon M S.Some weak self-adjoint Hamilton-Jacobi-Bellman equations arising in financial mathematics[J].Nonlinear Anal.RWA,2012,13:340-347.
[16] Ibragimov N H.Nonlinear self-adjointness and conservation laws[J].J.Phys.A:Math.Theor.,2011,44:432002.
[17] Naz R,Mahomed F M,Mason D P.Comparison of different approaches to conservation laws for some partial differential equations in fluid mechanics[J].Appl.Math.Com.,2008,:205:212-230.
[18] Wang T T,Liu X Q,Yu J Q.Symmetries,exact solutions and conservation laws of Caudrey-Dodd-Gibbon-Kotera-Sawada equation[J].Chinese Journal of Quantum Electronics(量子电子学报),2011,28:385-390 (in Chinese).
[19] Chen M,Liu X Q,et al.Exact solutions and conservation laws of symmetric regularized long wave equations[J].Chinese Journal of Quantum Electronics(量子电子学报),2012,29:21-26 (in Chinese).
[20] Zhao J X,Guo B L.Analytical solutions to forced KdV equation[J].Commun.Theor.Phys.,2009,52:279-283.
[21] Salas A H.Computing solutions to a forced KdV equation[J].Nonlinear Anal.RWA,2011,12:1314-1320.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%