欢迎登录材料期刊网

材料期刊网

高级检索

研究了置于一个驻波光腔中的二能级原子的定位情况,发现通过利用测量场正交分量的方法可以很好地定位单个原子的位置.在腔中放入两个二能级原子,根据瑞利极限条件可知若置于腔中的两个原子距离太近,很难区分出这两个原子.但同样地利用测量场的正交分量方法后仍然可以很好地分辨出这两个距离很近的原子.然而若考虑腔场的损耗时,腔损耗将会损害两原子之间的相对定位.并且随着腔的衰减系数增大,两原子之间相对定位情况也越差.

参考文献

[1] Kien F L,Rempe G,Schleich W P,et al.Atom localization via Ramsey interferometry[J].Phys.Rev.A,1997,56:2972.
[2] Fang M F,Liu X.The entanglement character of two entangled atoms in Tavis-Cummings model[J].Acta Physica Sinica(物理学报),2000,49:0435 (in Chinese).
[3] Shan C J,Xia Y J.Periodic entanglement between the internal and exteral degree of freedom of a trapped ion in a standing wave laser[J].Acta Physica Sinica(物理学报),2006,55:1558 (in Chinese).
[4] Yu L Z,Gong R S.Purification for entangled multi-atom states via entanglement swapping[J].Chinese Journal of Quantum Electronics(量子电子学报),2008,25(3):317-321 (in Chinese).
[5] Nha H,Lee J H,Chang J S,et al.Atomic-position localization via dual measurement[J].Phys.Rev.A,2002,65:033827.
[6] Zhang J X,Zhang T C,Xie C D,et al Interferometric detection of optical phase shift using twin beams[J].Chin.Phys.,1999,08:0437.
[7] Zheng L,Li C,et al.Localization of the relative position of two atoms induced by spontaneous emission[J].Phys.Rev.A,2005,71:062101.
[8] Ma H,Tan X,Tian S F,et al.Effect of spontaneously generated coherence on inversionless lasing gain in an atomic system with Doppler broadening[J].Chin.Phys.,2007,08:060903.
[9] Chang J T,Evers J,Zubaiyr M S.Distilling two-atom distance information from intensity-intensity correlation function[J].Phys.Rev.A,2006,74:043820.
[10] Chang J T,Evers J,et al.Measurement of the separation between atoms beyond diffraction limit[J].Phys.Rev.A,2006,73:031803.
[11] Macovei M,Evers J,Keitel C H.Localization of atomic ensembles via superfluorescence[J].Phys.Rev.A,2007,75:033801.
[12] Holland M J,Walls D F,Zoller P.Quantum nondemolition measurements of photon number by atomic beam deflection[J].Phys.Rev.Lett,1991,67:1716.
[13] Storey P,Collet M J,Walls D F.Measurement-induced diffraction and interference of atoms[J].Phys.Rev.Lett.,1992,68:472.
[14] Cahill K E,Glauber R J.Density operators and quasiprobability distributions[J].Phys.Rev.,1969,177:1882.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%