计算了一维XY海森堡模型的基态纠缠度并作相关分析,为量子通信和量子计算提供启示性信息.将von Neumann熵定义的纠缠度与模型的基态本征矢建立联系计算出该模型体系的基态纠缠度.计算结果表明,(1)总格点数N相同,自旋向上电子数k增加时,基态纠缠度η增加;k相同,N增加时,η减小,真实反映了此模型的关联性.(2)N为偶数,位型[N,N/2]时,η=1,体现了自旋链格点中自旋向上和向下的电子数呈严格的对称性.(3)模型参数不同, η有別.(4)η在整个参数变化区间内的导率一致,体系为有纠缠的连续长程相,属于从有序到有序的相变.
参考文献
[1] | Chen Meixiang,Li Honghai,Huang Zhiping,et al.Teleportation of a three-particle W state without the Bell-stateMeasurement[J].Chinsese Journal of Quantum Electronics (量子电子学报),2006,23(3):393 (in Chinese). |
[2] | Chen Libing,Liu Yuhua,Bai Yihong,et al.Implementing a non-local SWAP operation on two entangled pairs by a three-qubit entangled state and a Bell-state[J].Chinsese Journal of Quantum Electronics (量子电子学报),2006,23(4):489 (in Chinese). |
[3] | Bennett C H,et al.Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rose channel[J].Phys.Rev.Lett.,1993,70:1895-1899. |
[4] | Zha Xinwei.Expansion of orthogonal complete set and transformation operator in teleportation of three-particle entangled state[J].Chinsese Journal of Quantum Electronics (量子电子学报),2007,24(2):179 (in Chinese). |
[5] | Xi Yongjun,Fang Jianxing,Zhu Shiqun,et al.Probabilistic teleportation of an arbitrary three-particle entangledstate via three pairs partly entangled particles[J].Chinsese Journal of Quantum Electronics (量子电子学服),2006,23(1):61 (in Chinese). |
[6] | Deutsch D,et al.Quantum privacy amplification and the security of quantum cryptography over noisy channel[J].Phys.Rev.Lett.,1996,77:2818-2821. |
[7] | Zhu Aidong,Zhang Shou.Quantum key distribution and controlled quantum direct communication applying product state of qutrit[J].Chinsese Journal of Quantum Electronics (量子电子学报),2007,24(3):316 (in Chinese). |
[8] | Ji Xin,Zhang Shou.Teleportation of the three-particle entangled state by the two EPR pairs[J].Chinsese Journal of Quantum Electronics (量子电子学报),2006,23(6):816 (in Chinese). |
[9] | Shor P W.Scheme for reducing decoherence in quantum computer memory[J].Phys.Rev.A,1995,52:2493-2496. |
[10] | Hao Xiang,Zhu Shiqun.Entanglement in a spin-s antiferromagnetic Heisenberg chain[J].Phys.Rev.A,2005,72:042306. |
[11] | Bennett C H,et al.Mixed-state entangement and quantum error correction[J].Phys.Rev.A,1996,54:3824-3851. |
[12] | Ren Jie,Zhu Shiqun.Density-matrix renormalization-group study of entanglement and entropy in an antiferro-magnetic Heisenberg spin chain with domain walls[J].Phys.Rev.A,2008,77:034303. |
[13] | Vedral V,et al.Quantum entangement[J].Phys.Rev.Lett.,1997,78:2275-2279. |
[14] | Feng Rui,Jin Guojun.Condensed Matter Physics (Volume 1) (凝聚态物理学(上卷)).Beijing:Higher Education Press,2003,331-332 (in Chinese). |
[15] | Han Wenjuan.Energy spectrum of the XY model of heisenberg spin china in a certain situation[J].Guizhou University Journal (Natural Science) (贵州大学学报(自然科学版)),2007,24(3):244-246 (in Chinese). |
[16] | Wang Xiaoguang.Boundary and impurity effects on the entanglement of heisenberg chains[J].Phys.Rev.E,2004,69:066118. |
[17] | Pan Feng,Liu Dan,LU Guoying.Recent progress on entanglement of multipartite pure states[J].Journal of Liaoning Normal University (Natural Science) (辽宁师范大学学报(自然科学版)),2003,26(4):364-367 (in Chinese). |
[18] | Pan Feng,Draayer J P.Low-energy theory for bose-hubbzrd model and the normal ground state bosons[J].Phys.Rev.B,1999,60:14503-14506. |
[19] | Liu Yuxin,Sun Hongzhou.A checking method on calculating code for the eigenvalue problem of many particle system[J].Comput.Phys.Commun.,1994,81:145-152. |
[20] | Gu Shijian,Tian Guanshan,Hai Qinglin.Ground-state entanglement in the XXZ model[J].Phys.Rev.A,2005,71:052322. |
[21] | Gu Shijian,Tian Guanshan.Entanglement and quantum phase transition[J].Quant.Phys.,2005,128:0511243. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%