提出一种量子自组织特征映射网络模型及聚类算法.量子神经元的输入和权值均为量子比特,输出为实数,量子自组织特征映射网络由输入层和竞争层组成.首先将聚类样本转换成量子态形式并提交给输入层,完成聚类样本的输入;然后计算样本量子态与相应权值量子态的相似系数,提取聚类样本所隐含的模式特征,并对其进行自组织,在竞争层将聚类结果表现出来.采用量子门更新量子权值,分无监督和有监督两个阶段完成网络的训练.仿真实验结果表明该模型及算法明显优于普通自组织特征映射网络.
参考文献
[1] | Narayanan A,Moore M.Quantum inspired genetic algorithms[C].Proc of the 1996 IEEE International Conference on Evolutionary Computation (ICEC96),Nogaya:IEEE Press,1996,41-46. |
[2] | Han K H.Genetic quantum algorithm and its application to combinatorial optimization problem[C].IEEE Proc of the 2000 Congress on Evolutionary Computation,San Diego:IEEE Press,2000,1354-1360. |
[3] | Yang Junan,et al.Research of quantum genetic algorithm and its application in blind source separation[J].Acta Electronica Sinica (电子学报),2003,20(1):62-68 (in Chinese). |
[4] | Xie Guangjun,Fan Haiqiu,Cao Licheng.A quantum neural computational network model[J].Journal of Fudan University(Natural Science) (复旦学报 (自然科学版)),2004,43(5):700-703 (in Chinese). |
[5] | Xiong Jinhe,Gui Qifa.Dynamics of quantum neural networks and its applications to information security[J].Journal of Zhejiang Wanli University (浙江万里学院学报),2003,16(2):10-13 (in Chinese). |
[6] | Xie Guangjun,Zhuang Zhenquan.A quantum competitive learning algorithm[J].ChineseJjournal of Quantum Electronics(量子电子学报),2003,20(1):42-46 (in Chinese). |
[7] | Kak S.On quantum neural computing[J].Information Sciences,1995,83:143-160. |
[8] | Lewestein M.Quantum perceptrons[J].Journal of Modern Optics,1994,41(12):2491-2501. |
[9] | Chrisley R.Quantum learning[C].New Directions in Cognitive Science:Proc.of Int.Symp.,On Finish Association of Artificial Intelligence[M].Pylkkonen P.Ed.,Lapland,1995.77-89. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%