欢迎登录材料期刊网

材料期刊网

高级检索

提出一种量子自组织特征映射网络模型及聚类算法.量子神经元的输入和权值均为量子比特,输出为实数,量子自组织特征映射网络由输入层和竞争层组成.首先将聚类样本转换成量子态形式并提交给输入层,完成聚类样本的输入;然后计算样本量子态与相应权值量子态的相似系数,提取聚类样本所隐含的模式特征,并对其进行自组织,在竞争层将聚类结果表现出来.采用量子门更新量子权值,分无监督和有监督两个阶段完成网络的训练.仿真实验结果表明该模型及算法明显优于普通自组织特征映射网络.

参考文献

[1] Narayanan A,Moore M.Quantum inspired genetic algorithms[C].Proc of the 1996 IEEE International Conference on Evolutionary Computation (ICEC96),Nogaya:IEEE Press,1996,41-46.
[2] Han K H.Genetic quantum algorithm and its application to combinatorial optimization problem[C].IEEE Proc of the 2000 Congress on Evolutionary Computation,San Diego:IEEE Press,2000,1354-1360.
[3] Yang Junan,et al.Research of quantum genetic algorithm and its application in blind source separation[J].Acta Electronica Sinica (电子学报),2003,20(1):62-68 (in Chinese).
[4] Xie Guangjun,Fan Haiqiu,Cao Licheng.A quantum neural computational network model[J].Journal of Fudan University(Natural Science) (复旦学报 (自然科学版)),2004,43(5):700-703 (in Chinese).
[5] Xiong Jinhe,Gui Qifa.Dynamics of quantum neural networks and its applications to information security[J].Journal of Zhejiang Wanli University (浙江万里学院学报),2003,16(2):10-13 (in Chinese).
[6] Xie Guangjun,Zhuang Zhenquan.A quantum competitive learning algorithm[J].ChineseJjournal of Quantum Electronics(量子电子学报),2003,20(1):42-46 (in Chinese).
[7] Kak S.On quantum neural computing[J].Information Sciences,1995,83:143-160.
[8] Lewestein M.Quantum perceptrons[J].Journal of Modern Optics,1994,41(12):2491-2501.
[9] Chrisley R.Quantum learning[C].New Directions in Cognitive Science:Proc.of Int.Symp.,On Finish Association of Artificial Intelligence[M].Pylkkonen P.Ed.,Lapland,1995.77-89.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%