欢迎登录材料期刊网

材料期刊网

高级检索

根据矢量瑞利衍射积分公式,对非傍轴矢量离轴椭圆高斯光束的矩孔衍射进行了系统的研究,给出了矩孔衍射的解析表达式,并将非傍轴矢量离轴椭圆高斯光束矩孔衍射轴上、近场、远场和单缝衍射光场分布,非傍轴离轴矢量高斯光束以及非傍轴矢量高斯光束的自由空间传输作为特例统一于一般表达式中,研究表明,在矩孔衍射中,f参数,截断参数以及相对离轴参数共同决定着光束的非傍轴行为.

参考文献

[1] Nemoto S.Nonparaxial Gaussian beams[J].Appl.Opt.,1990,29(3):1940-1946.
[2] Lü Baida,Ji Xiaoling.Recent advances in laser optics[J].Chinese Jounal of Quantum Electronics (量子电子学报),2004,21(2):134-138 (in Chinese).
[3] Lü B D,Ma H.Coherent and incoherent combination off-axis Gaussian beams with rectangular symmetry[J].Opt.Commun.,1999,164:165-170.
[4] Seshadri S R.Virtual source for a Lagurre-Gauss beam[J].Opt.Lett.,2002,27(20):988-991.
[5] Lü Baida,Ji Xiaoling,Tao Xiangyang,et al.Numerical simulation of hard-edged diffracted beams[J].Infrared and Laser Engineering (红外与激光工程),2005,34(3):301-305 (in Chinese).
[6] Lü B D,Ji X.An approximate analytical study of laser beams with amplitude modulations and phase fluctuations through a multi-apertured ABCD system[J].Pure and Applied Optics,2004,6(2):61-166.
[7] Fu Wenyu,Liu Zhengqi.Gaussian double-beam interference of equal inclination[J].Acta Photonica Sinica (光子学报),2006,35(9):154-158 (in Chinese).
[8] Zhang Bin,Ma Hong,Lü Baida.M2-factor and coherence-mode of sinh-Gaussian beams[J].Acta Phys.Sina.(物理学报),1999,48(10):1869-187 (in Chinese).
[9] Gao Zenghui,et al.Propagation of vectorical off-axial Gaussian beams beyond the paraxial approximation[J].Acta Phys.Sina.(物理学报),2005,54(11):5144-5148 (in Chinese).
[10] A1-Rashed A R,Saleh B E A.Decentered Gaussian beams[J].Appl.Opt.,1995,34(30):6819-6825.
[11] Sheng Xueju,Wang Fu,Liu Bingqi,et al.A decentered elliptical Gaussian beam[J].Chinese Journal of Lasers (中国激光),1999,26(2):171-175 (in Chinese).
[12] Luneberg R K.Mathematical Theory of Optics[M].Berkeley California:California University Press,1966.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%