精确求解了自旋-1/2粒子在旋转磁场下的Bloch方程和Schrodinger方程.用此问题的循环解,得到了Aharonov-Anandan(AA)几何相和动力学相的解析结果,并用正交态方法构造了具有和乐几何量子计算优点的非绝热几何量子门.基于一般的SU(2)循环演化条件,还构造了只依赖轨道的绕数和扭结数的普适拓扑量子门.最后建议用非对称的约瑟夫森结纳米电路实现所构造的各种量子门.
参考文献
[1] | Chen Zonghai,Dong Daoyi.Quantum control theory[J].Chinese Journal of Quantum Electronics (量子电子学报),2004,21 (5):546-554 (in Chinese); Chen Zonghai,Dong Daoyi.Progress of the Research on Quantum Control in Experiment[J].Chinese Journal of Quantum Electronics (量子电子学报),2004,21 (1):1-6 (in Chinese) |
[2] | Duan L M,Cirac J I,Zoller P.Geometric manipulation of trapped ions for quantum computation[J].Science,2001,292:1695-1697 |
[3] | Jones J A,Vedral V,Ekert A K,et al.Geometric quantum computation using nuclear magnetic resonance[J].Nature,2000,403:869-871 |
[4] | Falci G,Fazio R,Palma G M,et al.Detection of geometric phases in superconducting nano-circuits[J].Nature,2000,407:355-358 |
[5] | Zanardi P,Resetti M.Holonomic quantum computation[J].Phys.Rev.A,1999,264:94-99 |
[6] | Leggett A J.Superconducting qubits-a major roadblock dissolved?[J].Science,2002,296:861-862 |
[7] | Wang X B,Keiji M.Non-adiabatic conditional geometric phase shift with NMR[J].Phys.Rev.Lett.,87:097901-1-097901-4 |
[8] | Zhu S L,Wang Z D.Implementation of universal quantum gates based on non-adiabatic geonetric phases[J].Phys.Rev.Lett.,2002,89:097902-1-097902-4 |
[9] | Du J F,et al.Implementations of non-adiabatic geometric quantum computation using NMR[OL].arXiv:quantph/0207022 v1 3 Jul 2002 |
[10] | Aharonov Y,Anandan J.Phase change during a cyclic quantum evolution[J].Phys.Rev.Lett.,1987,16:1593-1596 |
[11] | Nakamura Y,et al.Coherent control of macroscopic quantum states in a single Cooper-pair box[J].Nature,1999,398:786-788 |
[12] | Klarreich E.Knotty calculations[J].Science News,week of Feb.22,2003,163(8):124 |
[13] | Kitaev A Yu.Fault-tolerant quantum computation by anyons[OL].arXiv:quant-ph/9707021 |
[14] | Dennis E,Kitaev A,Landahl A,et al.Topological quantum memory[OL].arXiv quant-ph/0110143 24 (2001) |
[15] | Pachos J K,Vedral V.Topological quantum gates with quantum dots[OL].e-print quant-ph/0302077; Averin D V,Goldman V J.Quantum computation with quasiparticles of the fractional quantum Hall effect[OL].arXiv:condmat/0110193,10 (2001) |
[16] | Pachos J K,Vedral V.Topological quantum gates with quantum dots[OL].e-print quant-ph/0302077; Averin D V,Goldman V J.Quantum computation with quasiparticles of the fractional quantum Hall effect[OL].arXiv:condmat/0110193,10 (2001) |
[17] | Hasegawa Y,Loidl R,Badurek G,et al.Observation of off-diagonal geometric phases in polarized-neutron-interferometer experiments[J].Phys.Rev.A,2002,65:052111-1-052111-10 |
[18] | Suter D,Mueller K T,Pines A.Study of the aharonov-anandan quantum phase by NMR interferometry[J].Phys.Rev.Lett.,1988,60:1218-1220 |
[19] | Chiao R Y,Wu Y S.Manifestation of Berry's topological phase for the photon[J].Phys.Rev.Lett.,1986,57:933-936; Tomita A,Chiao R Y.Observation of Berry's topological phase by using an optical fiber[J].Phys.Rev.Lett.,1986,57:937-940 |
[20] | Chiao R Y,Wu Y S.Manifestation of Berry's topological phase for the photon[J].Phys.Rev.Lett.,1986,57:933-936; Tomita A,Chiao R Y.Observation of Berry's topological phase by using an optical fiber[J].Phys.Rev.Lett.,1986,57:937-940 |
[21] | Wu T T,Yang C N.Concept of nonintegrable phase factors and global formulation of gauge fields[J].Phys.Rev.D,1975,12:3845-3857; Yang C N.Integral formalism for gauge fields[J].Phys.Rev.Lett.,1974,33:445-447 |
[22] | Wu T T,Yang C N.Concept of nonintegrable phase factors and global formulation of gauge fields[J].Phys.Rev.D,1975,12:3845-3857; Yang C N.Integral formalism for gauge fields[J].Phys.Rev.Lett.,1974,33:445-447 |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%