欢迎登录材料期刊网

材料期刊网

高级检索

运用量子信息熵理论研究了Raman跃迁中原子的熵压缩特性.讨论了系统初态参数对原子信息熵压缩的影响.结果表明:信息熵压缩的分量数、压缩方向、压缩深度可以由原子的分布角、双模相干场相对位相和平均光子数的选取来控制.结果证明了信息熵能实现对原子压缩效应的高灵敏量度.

参考文献

[1] Winrland D D J, Bollinger J J. Squeezed atomic states and projection noise in spectroscopy [J]. Phys. Rev. A,1994,50(1): 67-88.
[2] Moore M G, Meystre P. Optical control and entanglement of atomic Schrodinger fields [J]. Phys. Rev. A, 1999,59(3): R1754-R1758.
[3] Braunstein S L, Dowling J P. Quantum-interferometric optical lithoguaphy:Towards arbitrary two-dimensional patterns [J]. Phys. Rev. A, 2001, 63(6): 063407(1-11); Bjrk G, Snchez-Soto L L. Subwavelength lithography over extended areas [J]. Phys. Rev. A, 2001, 64: 013811(1-8).
[4] Braunstein S L, Dowling J P. Quantum-interferometric optical lithoguaphy:Towards arbitrary two-dimensional patterns [J]. Phys. Rev. A, 2001, 63(6): 063407(1-11); Bjrk G, Snchez-Soto L L. Subwavelength lithography over extended areas [J]. Phys. Rev. A, 2001, 64: 013811(1-8).
[5] Stoler D. Equivalence classes of minimum uncertainty packets [J]. Phys. Rev. D, 1970, 1(6): 3217-3219; Wodkiewicz K. Reduced quantum fluctuations in the Josephson junction [J]. Phys. Rev. B, 1985, 32(10): 4750-4752.
[6] Stoler D. Equivalence classes of minimum uncertainty packets [J]. Phys. Rev. D, 1970, 1(6): 3217-3219; Wodkiewicz K. Reduced quantum fluctuations in the Josephson junction [J]. Phys. Rev. B, 1985, 32(10): 4750-4752.
[7] walls D F, Zoller P. Reduced quantum fluctuations in resonance fluorescence [J]. Phys. Rev. Lett., 1981, 47(10):709-711.
[8] Jorge S R. Position-momentum entropic uncertainty relation and complementarity in single-slit and double-slit experiments [J]. Phys. Rev. A, 1998, 57(3): 1519-1525; Michael J W H. Universal geometric approach to uncertainty, entropy, and information [J]. Phys. Rev. A, 1999, 59(4): 2602-2615.
[9] Jorge S R. Position-momentum entropic uncertainty relation and complementarity in single-slit and double-slit experiments [J]. Phys. Rev. A, 1998, 57(3): 1519-1525; Michael J W H. Universal geometric approach to uncertainty, entropy, and information [J]. Phys. Rev. A, 1999, 59(4): 2602-2615.
[10] Fang M F, Zhou P, Swain S. Entropy squeezing for a two-level atom [J]. J. Mod. Opt., 2000, 47(6): 1043-1053;Li C X, Fang M F. Entropy squeezing for a two-level atom in the Jaynes-Cummings model with an intensitydepend coupling [J]. Chin. Phys., 2003, 12(3): 294-299.
[11] Fang M F, Zhou P, Swain S. Entropy squeezing for a two-level atom [J]. J. Mod. Opt., 2000, 47(6): 1043-1053;Li C X, Fang M F. Entropy squeezing for a two-level atom in the Jaynes-Cummings model with an intensitydepend coupling [J]. Chin. Phys., 2003, 12(3): 294-299.
[12] Fang M F. Entangled states of cavity fields via the Raman interaction [J]. Acta Physica Sinica (物理学报), 1999,8(3): 401-408 (in Chinese).
[13] Biswas A, Agarwal G S. Quantum logic gates using Stark-shifted Raman transitions in a cavity [J]. Phys. Rev.A, 2004, 69(6): 062306(1-5).
[14] Gu H M, Xin D. Raman spectra by use of liquid core optical fibers and its development [J]. Chinese Journal of Quantum Electronics (量子电子学报), 2003, 20(4): 391-398 (in Chinese).
[15] Alsing P, Zubairy M S. Collapse and revivals in a two-photon absorption process [J]. J. Opt. Soc. Am. B, 1987,4(2): 177-184.
[16] Cardimona D A, Kovanis V, Sharma M P, et al. Quantum collapses and revivals in a nonlinear Jaynes-Cummings model [J]. Phys. Rev. A, 1991, 43(7): 3710-3723.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%