欢迎登录材料期刊网

材料期刊网

高级检索

微空心阴极放电是一种新颖的、非平衡、高气压辉光放电.综述了微空心阴极放电的基本原理;详细论述了微空心阴极放电中的准分子辐射,以及微空心阴极放电的放电方式(直流放电、脉冲放电、射频放电)对准分子辐射强度和效率的影响;最后论述了微空心阴极放电的运行方式(串联运行、并联运行)对准分子辐射的影响.

参考文献

[1] Schaefer G, Schoenbach K H. in Physics and Applications of Pseudosparks [M]. edited by M. Gundersen and G.Schaefer. New York: Plenum, 1990. 55.
[2] Schoenbach K H, Verhappen R, Tessnow T, et al. Microhollow cathode discharge [J]. Appl. Phys. Lett., 1996,68: 13-15.
[3] Schoenbach K H, Ahmed El-Habachi, Shi W, et al. High-pressure hollow cathode discharges [J]. Plasma Sources Sci. Technol., 1997, 6: 466.
[4] White A D. New hollow cathode glow discharge [J]. J. Appl. Phys., 1959, 30: 711-719.
[5] Robert H. Stark, Schoenbach K H. Direct current high-pressure glow discharges [J]. J. Appl. Phys., 1999, 85:2075-2080.
[6] Ahmed El-Habachi, Schoenbach K H. Emission of excimer radiation from direct current, high-pressure hollow cathode discharges [J]. Appl. Phys. Lett., 1998, 72: 22-24.
[7] Ahmed El-Habachi, Karl H. Schoenbach. Generation of intense excimer radiation from high-pressure hollow cathode discharges [J]. Appl. Phys. Lett., 1998, 73: 885-887.
[8] Kurunczi P, Lopez J, Shah H, et al. Excimer formation in high-pressure microhollow cathode discharge plasmas in helium initiated by low-energy electron collisions [J]. Int. J. of Mass Spectrometr., 2001, 205: 277-283.
[9] Kurunczi P, Martus K E, Becker K. Neon excimer emission from pulsed high-pressure microhollow cathode discharge plasmas [J]. Int. J. of Mass Spectrometr., 2003, 223-224: 37-43.
[10] Robert H. Stark, Schoenbach K H. Electron heating in atmospheric pressure glow discharges [J]. J. Appl. Phys.,2001, 89: 3568-3572.
[11] Moselhy M, Shi W, Stark R H, et al. Xenon excimer emission from pulsed microhollow cathode discharges [J].Appl. Phys. Lett., 2001, 79: 1240-1242.
[12] Yoou-Bin Guo, Franklin Chau-Nan Hong. Radio-frequency microdischarge arrays for large-area cold atmospheric plasma generation [J]. Appl. Phys. Lett., 2003, 82: 337-339.
[13] Schoenbach K H, Ahmed El-Habachi, Moselhy M, et al. Microhollow cathode discharge excimer lamps [J]. Phys.Plasmas., 2000, 7: 2186-2191.
[14] Ahmed El-Habachi, Moselhy M, Schoenbach K H. Bull. Am. Phys. Soc., 1999, 44: 67.
[15] Ahmed El-Habachi, Wenhui Shi, Mohamed Moselhy, et al. Series operation of direct currect xenon chloride excimer sources [J]. J. Appl. Phys., 2000, 88: 3220-3224.
[16] Vojak B A, Park S J, Wagner C J, et al. Multistage, monolithic ceramic microdischarge device having an active length of~ 0.27 mm [J]. Appl. Phys. Lett., 2001, 78: 1340-1342.
[17] Allmen P V, Sadler D J, Jensen C. Linear, segmented microdischarge array with an active length of ~1 crm: cw and pulsed operation in the rare gases and evidence of gain on the 460.30 nm transition of Xe+ [J]. Appl. Phys.Lett., 2003, 82: 4447-4449.
[18] Allmen P V, McCain S T, et al. Ceramic microdischarge arrays with individually ballasted pixels [J]. Appl. Phys.Lett., 2003, 82: 2582-2584.
[19] Wenhui Shi, Robert H. Stark, Schoenbach K H. Parallel operation of microhollow cathode discharges [J]. IEEE Trans. Plasma Sci., 1999, 27: 16-17.
[20] Schoenbach K H, Moselhy M, Shi W, et al. Microhollow cathode discharges [J]. J. Vac. Sci. Technol. A., 2003,21: 1260-1265.
[21] Sung-Jin Park, Jack Chen, et al. Microdischarge arrays: a new family of photonic devices (revised*) [J]. IEEE J.on Sel. Top. in Quant. Electron., 2002, 8(2): 387-394.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%