借助于SU(1,1)代数,找出了二维谐振子与二维氢原子的能量及波函数间的关系.
参考文献
[1] | Boiteux M. The three-dimensional hydrogen atom as a restricted four-dimensional harmonic oscillator [J]. Physica,1973, 65:381 |
[2] | Cornish F H J. Kepler orbits and the harmonic oscillator [J]. J. Phys., 1984, A17:2191 |
[3] | Kibler M, Negadi T. On the connection between the hydrogen atom and the harmonic oscillator: the continuum case [J]. J. Phys., 1983, A16:4265 |
[4] | Cornish F H J. The hydrogen atom and the four-dimensional harmonic oscillator [J]. J. Phys., 1984, A17:323 |
[5] | Kibler M, Negadi T. Connection between the hydrogen atom and the harmonic oscillator: the zero-energy case [J].Phys. Rev., 1984, A29:2891 |
[6] | Koctelecky V A, Nieto M M, Truax D R. Supersymmetry and the relationship between the Coulomb and oscillator problems in arbitrary dimensions [J]. Phys. Rev., 1985, D32:2627 |
[7] | Barut A O, Duru I H. Introduction of internal coordinates into the infinite-component Majorana equation [J].Proc., R., Soc., London Ser., 1973, A333:217 |
[8] | 怀邦B G著,冯承天等译.典型群及其在物理学上的应用[M].北京:科学出版社,1982.216-218 |
[9] | 朗道,栗弗席茨著.严肃译.量子力学(上册)[M].北京:高等教育出版社,1980.46 |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%